

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

A METHOD OF PHOTO DATA REDUCTION, WITH DESIGN CONSIDERATIONS FOR THE NOVA 800® AND UNIVAC 1100/83® COMPUTERS

AD-A144 537

James J. Lambert

January 1984

NAVAL BIODYNAMICS LABORATORY New Orleans, Louisiana

Approved for public release. Distribution unlimited.

84 08 21 029

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	10. 3. RECIPIENT'S CATALOG NUMBER
NBDL-84R001 AD-A144	5[37
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
A Method of Photo Data Reduction, with Design Considerations for the NOVA 800®	Research Report
and UNIVAC 1100/83® Computers	6. PERFORMING ORG. REPORT NUMBER
	NBDL-84R001
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(#)
James J. Lambert	
A DESIGNATION AND AND ADDRESS	
P. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Biodynamics Laboratory P. O. Box 29407	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
New Orleans, LA 70189	M0097PN001-5001
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Naval Medical Research & Development Command Bethesda, MD 20814	January 1984 13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office	86) 15. SECURITY CLASS. (of this report)
WONITONING NORMER NAME & ADDRESS(II different from Controlling Office	Unclassified
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; distribution unlim	
18. SUPPLEMENTARY NOTES	
18. KEY WORDS (Continue on reverse side if necessary and identify by block number data analysis, computer program, photo data redusystem (PDS), high speed camera, biodynamic expenses, impact injury models 30. ABSTRACT (Continue on reverse side if necessary and identify by block numbers.)	action, photo digitizing eriments, inertial environ-
Digitized photo data acquired during impact expectonverted to a format suitable for analysis. Or requires comprehensive graphical presentation of This report presents a detailed description of accomplish such tasks in both a production and Procedures utilizing the design presented have found to be effective.	eriments must be scaled and note converted, this data or efficient interpretation. the software developed to an interactive environment.

A METHOD OF PHOTO DATA REDUCTION, WITH DESIGN CONSIDERATIONS

FOR THE NOVA 800® AND UNIVAC 1100/83® COMPUTERS

James J. Lambert

January 1984

Naval Medical Research and Development Command Research Work Unit No. MO097PN001-5001

Approved by

Released by

J. C. Guignard Chairman, Editorial Review Board Captain L. E. WILLIAMS MC USN Commanding Officer

Naval Biodynamics Laboratory P. O. Box 29407 New Orleans, LA 70189

Opinions or conclusions contained in this report are those of the author(s) and do not necessarily reflect the views or the endorsement of the Department of the Navy. Approved for public release; distribution unlimited. Reproduction in whole or in part is permitted for any purpose of the United States Government.

SUMMARY PAGE

THE PROBLEM

Digitized photo data acquired during impact experiments must be scaled and converted to a format suitable for analysis. Once converted, these data require comprehensive graphical presentation for efficient interpretation. This report presents a detailed description of the software developed to accomplish such tasks in both a production and an interactive environment.

FINDINGS

Procedures utilizing the design presented have been instituted at NBDL and found to be effective.

RECOMMENDATIONS:

In an environment requiring data reduction processing of photo data, the design presented herein should be considered.

ACKNOWLEDGEMENT

This research was sponsored by the Naval Medical Research and Development Command and was performed under Navy Work Unit No. MO097PN001-5001. The author acknowledges Mr. William R. Anderson for valuable technical collaboration proving useful in the presentation of findings of this research. Miss Judy B. Johnson expended much time and patience in creating and maintaining the report text using NBDL word processing equipment. Additionally, Mr. Arthur M. Prell and Miss Margaret M. Harbeson were responsible for the creation of photographic reproductions (of illustrations) and the manuscript editing functions, respectively.

Trade names of materials or products of commercial or nongovernment organizations are cited only where essential for precision in describing research procedures or evaluation of results. Their use does not constitute official endorsement or approval of the use of such commercial hardware or software.

TABLE OF CONTENTS

				PAGE	
INTRODU	CTION	٧	• • • • • •	1	
1.	PHOT	TO DATA CONVERSION PROGRAM	• • • • • •	2	
	A.	INTRODUCTION	•••••	2	
	В.	DISCUSSION	•••••	2	
	c.	MAIN PROGRAM AND SUBROUTINE DESCRIPTIONS	• • • • • •	5	
2.	PLOT	T PROGRAM FOR PHOTO DATA	•••••	6	
	Α.	INTRODUCTION	•••••	6	
	В.	DISCUSSION	•••••	6	
	c.	MAIN PROGRAM AND SUBROUTINE DESCRIPTIONS	•••••	9	
3.	REFO	DRMATTING (SIGN CHANGE) PROGRAM FOR PHOTO DATA	•••••	10	
	A.	INTRODUCTION	•••••	10	
	В.	DISCUSSION	•••••	10	
	c.	MAIN PROGRAM DESCRIPTION	•••••	11	
4.	OPER	RATION OF PHOTO DATA REDUCTION SYSTEM	•••••	11	
	A.	INTRODUCTION	•••••	11	
	В.	DISCUSSION	•••••	11	
	c.	PRODUCTION RUNSTREAM	•••••	15	
CONCLUS	ION.		•••••	17	
FIGURES	j	• • • • • • • • • • • • • • • • • • • •	•••••	18	
REFEREN	CES.	••••••••••••	•••••	39	- L
APPENDI	CES	_ 1	linann	ounced	
_		(st.)		fication	
) [IC (broken)	Ву		
			D1 -+ -/	4 hu + 4 am /	

AUG 2 1 1984

Unani	nounced 🔲
Just	lfication
Ву	
Dist	ribution/
Ava	lability Codes
	Avail and/or
Dist	Special
A 1	
H-1	
<u> </u>	

111

A METHOD OF PHOTO DATA REDUCTION, WITH DESIGN CONSIDERATIONS FOR THE NOVA 800® AND UNIVAC 1100/83® COMPUTERS

INTRODUCTION

The Naval Biodynamics Laboratory (NBDL), located in New Orleans, LA, is an internationally recognized laboratory which performs experimental research to determine the effects of aircraft crashes, ship motion, vibration, aircraft ejection and parachute opening forces on the health and performance of Navy personnel. On-going research programs use high speed instrumentation cameras to record the motion of test subjects during biodynamic experiments. The films are digitized and the 3-dimensional motion is reconstructed and analyzed.

The procedures and programs used to convert the digitized photo data into a format compatible with a large-scale general purpose computer (UNIVAC 1100®), to plot the data for identification of data errors, and to prepare the data for subsequent processing have recently undergone major revision. The objectives of the revision were to:

- 1. Modify existing software to be compatible with announced changes in the UNIVAC operating system.
- 2. Use new graphics support capabilities to improve error detection procedures, reduce turn-around time of analysis, and produce output compatible with all available graphics devices.
 - 3. Improve efficiency of operations personnel.
- $4\,\mathrm{c}$ Standardize data formats and I/O access methods to be compatible with existing archival data.
- 5. Develop a modular organization of software which provides greater operational flexibility.

This report documents the new procedures and programs.

DESCRIPTION OF SOFTWARE

Preparation of digitized photo data for subsequent reduction and analysis requires a process consisting of several tasks performed under computer control. Software supporting each task conforms to the principles of modular design so that task sequences may be selected to meet specific needs of the data being processed.

In order to process digitized photo data through a data reduction flow, major tasks are selected and merged in a single runstream. The three available programs are:

1. Convert photo data from PDS (Photo Digitizing System) NOVA 800® format to UNIVAC 1100/83® format for subsequent analysis.

- 2. Produce film frame plots and x-y trajectory plots of target data in order to provide graphical presentation for error analysis.
- 3. Convert data digitized manually into the format of data tracked under computer control.

Each of these components is documented in detail in the body of this presentation. It is assumed that the reader is familiar with the operating system of the UNIVAC 1100/83® computer (see reference 3) and with the UNIVAC ASCII FORTRAN programming language (see reference 4). Although the software presented herein is intended for specific computers, plotting devices and software support packages, it has been designed to minimize the conversion effort for other systems.

1. Photo Data Conversion Program

- A. Introduction. This section describes a UNIVAC 1100/83® program which converts photo data from PDS (Photo Digitizing System) data tapes to UNIVAC 1100/83® format. In converting data to a format compatible with a large-scale general purpose computer (UNIVAC 1100/83®), the photo data conversion program provides a suitable environment for efficient data reduction and graphical presentation.
- B. Discussion. Input to the conversion program is a PDS data tape. It contains digitized photographic data from at least one experiment, or run. For a particular run, as many as three cameras are used to photograph targets on anatomical mounts strapped to the experimental subject. Each reel of film generated from these cameras during the run is digitized (on the NOVA 800® system), with the output being written to a PDS data tape. Data for several runs may be written to a single PDS tape. This tape contains four record types. The first is a header record, which contains identification information for film from a particular camera used during a run. This record includes such items as run number, PDS record type, camera site number (1, 2 or 3), julian date the film was digitized and time-of-day for the first film frame (all character data on the PDS tape is in ASCII format and numeric data is in twos complement integer format). The second record type is the time record, which identifies time-of-day for each film frame, or data point. The time data values originate from LED displays on the film frames themselves. There are 250 data points on a time record (the first point being the time at first motion of the subject). Identification information for the reel of film the time record describes is also included in the record, i.e., run number, PDS record type and camera site number. The final two record types are the X and Y data records, respectively. Each contains 250 data points measuring film plane displacement (inches) from a stationary origin on the film. An X and Y data record exists for every photo target tracked during the run. Each data record contains (in addition to displacement values) run number, PDS record type, camera site number and a target number. The target number contains information describing the anatomical mount type on which it is located. For instance, there are head mounts, neck mounts, mouth mounts and pelvic mounts - all designed to track motion of a particular segment of the body.

Data on a PDS output tape is organized by reels of film. That is, all data for a particular reel of film (with its unique header, time and data records) are grouped together into a file. The order in which the records appear is always the same: header record, time record, target 1 (x values), target 1 (y values) ··· target N (x values), target N (y values), where N = number targets digitized on film. In some experiments more than the standard 250 frames are digitized. In this instance the data records for the extra frames (always a multiple of 250) are written to the PDS tape immediately after the final data record containing data for the previous 250 frames. An end-of-file separates each group of data records for a particular set of 250 frames. A double end-of-file signals the end of data on the tape.

The conversion program reads the NOVA 800® input tape and stores it in an input buffer. The PDS characters are in 8-bit ASCII format and the numeric data is either in 16-bit or 32-bit integer format. The conversion program determines the format of the information to be converted from the format specifications of the PDS input tape (see Figures 1b-1d). All character data is converted from 8-bit NOVA ASCII to 9-bit UNIVAC ASCII format. Numeric data is either converted to 36-bit UNIVAC floating point format or 36-bit UNIVAC integer format, depending on the format type of the information being converted. For instance, PDS record type is converted from NOVA 16-bit integer to UNIVAC 36-bit integer, while displacement (data) values are converted from NOVA 32-bit integer to UNIVAC 36-bit floating point format. All converted displacement values are then scaled from inches to meters. This is done to provide data compatibility with a group of data analysis programs collectively called EASYFLOW*.

The converted and scaled photo data must be output in a standard file format suitable to subsequent processing; in addition this data must be output in FIELDATA format, which is the NBDL archival standard. This second requirement presents difficulties in an ASCII FORTRAN programming environment. In order to provide for both needs an I/O access package (see Reference 1) has been developed to (1) provide standard I/O access methods for an established photo data file format and (2) maintain data format compatibility with the NBDL archives. The I/O package provides directory maintenance for the user. The conversion program utilizes this capability to output the standardized direct access record. This directory contains unique run identification numbers (for all runs on the output tape) and accompanying sector locations for both header and time records for the run. The directory provides means for rapid direct access of photo data for a given run number.

^{*} EASYFLOW is an NBDL term representing a data reduction and analysis system requiring input data of a specific format. EASYFLOW uses converted photo data to derive position coordinates in 3-dimensional space of targets affixed to anatomical mounts (which are strapped on to the experimental subject). These data are subsequently used to compute and plot displacement, linear (and angular) velocity and linear (and angular) acceleration of the subjects.

There are four record types, in addition to the directory, which the conversion program outputs to a UNIVAC mass storage file. The first of these is the header record. There exists a unique header record for each camera site used in a run. There are no more than three and no less than two cameras used in a run, each assigned a site identification number of 1, 2 or 3. This site ID and the run number in concert make the header record unique. A keyword is stored in the header record along with identification information such as the run number and site ID. The keyword identifies the record as a header. The second type of output record is the time record. It contains the time-of-day information for each of 250 film frames. In addition the time record includes the run number, the site ID and a keyword for identification. The third record type is a photo data record. It contains displacement values (from a fixed point on the film plane) in meters of a particular photo target on the reel of film. Also included are the run number and site ID of the film, along with a keyword identifying the record type. This keyword also contains information identifying the anatomical mount (on which the photo target resides) and the axis type of the data (X or Y). The combination of header record, time record and data records (for all targets on the reel of film) is written to disk, in the order listed, by the conversion program. Data for each reel of film with a camera site ID of 1 are grouped together on the output file and separated by double ends-of-file*. An additional end-of-file is written after the final data record of the final reel of film for site ID 1. This signifies end-of-data. However, the direct access table follows this final end-of-file. It is located at the end of the file so as not to limit its size. In order to provide access to the directory a "locator table" is written as the initial output record. It contains the sector address of the directory.

The above output file structure is duplicated for camera site 2 (and 3 if necessary). A separate UNIVAC disk file is thus created for each site ID. Each of these files is in a standardized format, and serves as input to a UNIVAC runstream designed to write them to a UNIVAC 1100/83® data tape.

The conversion program is designed to correct three common situations in which PDS operator error has occurred. These three special cases are:

- (1) The run number of a header record for a reel of film is entered incorrectly by the PDS operator and written to the PDS data tape.
- (2) A reel of film is re-digitized by the PDS operator and output to the end of the same PDS data tape as data from the original reel of film.
- (3) The camera site ID of a header record for a reel of film is entered incorrectly by the PDS operator and written to the PDS data tape.
- * If more than 250 frames of data were digitized on a reel of film, each group of data records for the extra frames (always a multiple of 250) is written in succession and separated by single end-of-file.

In cases (1) and (3) the conversion program uses correction fields in card image input in order to scan the header record for the incorrect entry and then correct it. This is done prior to writing the header to disk. In case (2) the conversion program scans for the first occurrence of the data file for a reel of film. Once found, this data file (header, time and data records) is bypassed and thus not converted and output. However, the second occurrence of a data file for the reel of film is converted and output in the usual manner. The photo conversion program accomplishes the following objectives:

- (1) Converts photo data to a format compatible with a large-scale general purpose computer (UNIVAC $1100/83^{\oplus}$).
- (2) Scales displacement data values from inches to meters in order to provide data compatibility for subsequent processing.
 - (3) Provides for correction of common PDS operator errors.
 - (4) Accomplishes output of data with standardized I/O access methods.
 - (5) Maintains data format compatibility with the NBDL archives.

C. Main Program and Subroutine Descriptions:

- (1) MAIN (see Appendix 1b for listing) This is the driver program which controls all program operations. All correction cards are read by this program and used to rectify the three special cases earlier noted. MAIN then calls subroutine CONVT in order to read and convert the first PDS input record (see Figures 1e-1g for input record formats). The rest of the input records (non-header) for the run are read and converted by virtue of calls to subroutine CNVT1. Here the converted records are written to mass storage. Once a run has finished processing, control returns to MAIN and the process repeats itself until all runs have been processed. At this point a triple end-of-file, denoting end-of-data, is written to the output file.
- (2) CNVT1 (see Appendix 1c for listing) This subroutine controls the conversion and output of all data for each camera. The main program reads the header records and transfers control to this subroutine for reading and conversion of the position and time records. The position data is converted from inches to meters*. Each header, time and position record is written to mass storage by a call to the photo IO subroutine PUTRCD (see Appendix 4c). Data for each site ID is written to a separate mass storage unit (see Figure 2a). As mentioned earlier, the necessary data directories are maintained and written by the photo IO subroutines. After processing an entire run, CNVT1 writes a double end-of-file for each output unit and returns control to the calling program.**
- * During the scaling process all data values of 0.0 (points not digitized) are set to 999.0
- ** If more than 250 frames were digitized for each target in a run, only a single EOF (End-of-file) is written after the final data record for each set of 250 frames.

(3) CONVT (see Appendix 1d for listing) – This subroutine is called by CNVT1 to perform the actual conversion of data from PDS format to UNIVAC 1100/83 $^{\circ}$ format. It is called after each read of a PDS input record. All character data is converted from 8-bit ASCII to 9-bit ASCII format. Numeric data is converted from 32-bit binary integer to UNIVAC 1100/83 $^{\circ}$ 36-bit binary floating point format (see Figures 2b-2f for output record formats).

In this subroutine the sign bit is extended for negative numbers; these negative values are data entered manually by the PDS operator by using the X,Y crosshair input.

- (4) SPHAVG (see Appendix 1e for listing) This subroutine calculates the X and Y position of a stationary reference target relative to the film sprocket hole for each camera used in a run. Sprocket hole values for five consecutive frames are averaged, the result being subtracted from the averaged sled (chair) displacements for the same five frames in order to produce the final value. The X and Y sprocket hole averages are printed for each camera and in those cases where there is no sprocket hole information on the PDS tape, the values can be read from the film by the PDS operator and calculated by hand. Execution of EASYFLOW is expedited by providing sprocket hole averages at the time of conversion. This information is required for an internal consistency check on the data collection and system.
- (5) ASC8T9 (see Appendix 1f for listing) This subroutine converts a string of 8-bit ASCII characters to a UNIVAC 1100/83® compatible 9-bit ASCII character string. All character data read from the PDS input tape is converted by the subroutine. The high order bit of a 9-bit ASCII character is always off, this bit being the only difference between an 8-bit ASCII character and a UNIVAC 1100/82 9-bit character.

2. Plot Program for Photo Data

- A. Introduction. This section describes an ASCII FORTRAN UNIVAC 1100/83® program which plots UNIVAC-compatible photo data as (a) X-Y film frame plots and (b) X-Y trajectory plots. These plots provide a method for error detection of faulty photo data, allowing for correction of the data before any further processing takes place.
- B. Discussion. The plot program generates both x-y film frame plots and x-y trajectory plots. The film frame plots (see Figure 5a) plot the position of each photo target (on a reel of film) relative to the film frame origin. Each individual frame of film is plotted, and all target positions in the frame are connected by straight lines; this aids in visual recognition of relative changes in target positions from frame to frame. There is sometimes more than one anatomical mount (see Figure 6 for mount example) visible to a camera during a run. It is for the reason that a separate set of film frame plots are generated for each anatomical mount found on a reel of film. For instance, if two mounts are visible to a particular camera and only one mount is visible to a second camera, three sets of film frame plots are generated for the experiment. A total of 250 film frames are plotted for each set,

which consists of ten pages of twenty-five plots each. On top of each page the plot scale (meters) is listed; this measures the greatest target displacement from the first to last frame on the page. In addition all target positions which were manually digitized (not automatically tracked) by the PDS operator are circled for identification. The film frame plots are used to identify errors which may exist in the data. For instance, a target may have been identified incorrectly by the PDS operator; this problem is visually exposed in the film frame plots. Subsequently the data file is corrected.

The x-y trajectory plots (see Figure 5b) identify the path each target (or a reel of film) travels in the film plane during a run. Each individual point on the plot measures target displacement from a fixed film frame origin. A total of 250 data points are plotted, with the first coinciding with time of first motion of the experimental subject. Since more than one anatomical mount may appear on a reel of film, a separate x-y trajectory plot is generated for each mount on the film. The path of every photo target on a mount (visible to the camera) is plotted, each identified by its own target number. The x-y trajectory plot provides at a glance a visual presentation of target movement (for a given mount) for the entire run duration; this allows for quick detection of data discontinuities. For instance, if the pattern recognition algorithms (used in the photo digitizing process) found the wrong target, a detectable discontinuity results in the x-y trajectory plot.

The plot program for photo data possesses versatile plot output capabilities, made available through the use of DISSPLA® plot software (a product of ISSCO*). All plot commands are output to a catalogued UNIVAC disk file (via DISSPLA® software). This "compressed" plot file can then be used as input to a variety of DISSPLA® post-processor programs, which "decompress" the plot commands and direct them to a plotting device. This disk file may be utilized several times on a variety of plotting devices without once repeating execution of the actual plot program. DISSPLA® post-processor programs exist for such plotting devices as the TEKTRONIX 4014®, FR80® and HP 7220® (all available to NBDL).

There are advantages in using any of these post-processors. For instance, the FR80® post-processor is used in a production environment to generate microfiche and high quality hardcopy. The TEKTRONIX 4014® post-processor can be used to view selected plots on the TEKTRONIX 4014® scope immediately after execution of the photo data plot program. This quick turnaround is of benefit in expedient data analysis. The FR80® is not located on-site, so in order to combine the benefits of quick turnaround and high quality hardcopy an HP 7220® plotter is to be installed on-site. This plotter in addition affords a multicolor plotting capability.

^{*} Integrated Software Systems Corporation

The input to the plot program is UNIVAC-compatible photo data. Character data is in 9-bit UNIVAC ASCII format and numeric data is either in 36-bit UNIVAC integer format or 36-bit UNIVAC floating point format (depending on format specifications). As noted in section 1.B data is organized on the input files by film reel, with a separate input file for each camera site. A directory exists in each input file, containing the run numbers (each run number identifies a unique film reel) and accompanying sector locations of the header and time records. The data records for a run (or film reel) immediately follow the time record, and a "locator table" for the directory precedes all other records on the file. Input is accomplished with a general purpose I/O package (see Reference 1) which reads FIELDATA (NBDL archival standard) in an ASCII FORTRAN programming environment. Plots are output for each input file (or camera site). Within each file, plots are output by run number (or film reel) and within each run plots are output by anatomical mount.

The PDS operator is responsible for entering time-of-day values (LED displays) for each frame of digitized film. To insure their legitimacy the plot program performs tolerance checks for the time values. The results (see Figure 5c), called a time record analysis, are output to a line printer*.

The plot program for photo data accomplishes the following:

- (1) Provides error detection methods for photo data by generating:
 - (a) x-y film frame plots.
 - (b) x-y trajectory plots.
- (2) Performs confidence checks for time-of-day values for film frames and prints the results.
- (3) Provides plot flexibility features through the use of post-processor programs.
- (a) Plots can be generated repetitively without repeat execution of the plot program.
- (b) Plots can be viewed immediately upon execution on a demand terminal scope.
 - (c) Quality hardcopy and microfiche of plots are generated.
 - (4) Accomplishes input of data with standardized I/O access methods.
- * This analysis may be output to a plotting device, but it is slower and more expensive to do so.

C. Main Program and Subroutine Descriptions:

- (1) PLOT (see Appendix 2b for listing) This is the driver program which controls all program operations. A single input card identifies (a) the number of input files, (b) the time record analysis option, (c) the X-Y contour plot option, (d) the frame plot option, (e) the frame plot format option, (f) the lowest run number to be processed and (g) the highest run number to be processed (see Appendix 2a for card format). Once the input card is read, DISSPLA® is called to initialize the compressor. Plotting is accomplished by virtue of a loop which controls the input and subsequent plotting of photo data for each combination of run/camera site/anatomical mount (see Figures 2b-2f for input record formats).
- (2) TIMER (see Appendix 2c for listing) This subroutine generates a time record analysis for a given run number and site ID. The time record is input via the photo data I/O program (see reference 1). A time interval between frames is approximated by averaging total elapsed time over the 250 frames of data. This increment is used to calculate an "expected time" for each of 250 frames. These times are compared to the actual time record data points in order to test for excessive error (a difference between actual and "expected" time greater than .001 second). Any such discrepancies are annotated with an asterisk (*) on the time record analysis (see Figure 5c).
- (3) LDATA (see Appendix 2d for listing) This subroutine loads photo displacement data into common for access by plot subroutines. This routine is called once for each combination of run/camera/mount. The photo data I/O package is used to accomplish input (in order to read FIELDATA within an ASCII FORTRAN program).
- (4) MIXY (see Appendix 2e for listing) This subroutine determines minimum and maximum X and Y values for a page (twenty-five frames) of frame plots. These values are placed in common for scaling use by the plot subroutines. The minimum and maximum values are selected so that the abscissa and ordinate axes are equal lengths in data units (meters). This allows the viewer of the plots to determine at a glance in which direction the targets were moving fastest. For example, if the targets moved from the far left of the initial frame on the page to the far right of the final (25th) frame, the X filmplane displacement was changing more rapidly than the Y displacement.
- (5) PLOTD (see Appendix 2f for listing) This subroutine consists of two entry points. All plotting in both entry points is done with DISSPLA® software.
- A. PLOT1 This entry point plots the title information for each page of frame plots. Included in the title information are the (i) run number, (ii) camera number, (iii) plot scale (meters), (iv) anatomical mount type and (v) page number. All plotting is done with DISSPLA® software.

- B. PLOT2 This entry point plots all frame plots. It is called once for every frame of photo data to be plotted. Two-hundred fifty frames are plotted for each mount, twenty-five frames/page, ten pages/mount. The target number for all targets tracked (by the PDS operator) in a particular frame are printed directly at their digitized position. Those targets digitized manually are circled for identification. All targets in a particular frame are connected by vectors in order to present the image of motion as the targets begin to change position from frame to frame. Targets may have been deleted or added as the frames advance. Deleted target numbers are printed in the bottom right corner of the frame in which the target was dropped. Added targets are printed in the bottom left corner of the frame in which the target was added. If chair data are available for the current run/camera, a 'C' is printed in the top left corner of each frame. The frame number is printed in the top right corner of the frame.
- (6) XYPLOT (see Appendix 2g for listing) This subroutine plots X vs. Y filmplane displacement values for a given run/camera/anatomical mount. All targets digitized for the mount are plotted on the same graph. A maximum of 250 data points are plotted (and connected) for each target, with the target number appearing coincident with the first point for a curve. The maximum and minimum values of the abscissa and ordinate are printed on the plot. In addition, titling information is listed which includes (i) run number, (ii) camera number, (iii) anatomical mount type and (iv) current date. The X-Y contour plot affords the viewer a quick method of isolating data incongruities.

3. Reformatting (sign change) Program for Photo Data

- A. Introduction. This section describes an ASCII FORTRAN UNIVAC 1100/83® program which converts UNIVAC-compatible photo data, digitized manually, into the format of data tracked under computer control. This prepares the data for subsequent computation of 3-dimensional trajectories of test subjects.
- B. <u>Discussion</u>. This program is designed to read all target position data for a given range of run numbers and scan for negative data values. Each negative value represents an entry made manually by the PDS (Photo Digitizing System) operator using the x-y crosshairs. All such values are multiplied by -1 and rewritten to the data file. An archival data tape is later generated (with the reformatted data records) by an independent runstream. This tape serves as input to the EASYFLOW runstream.

Input to the reformatting program is UNIVAC-compatible photo data. Character data are in 9-bit UNIVAC ASCII format and numeric data are either in 36-bit UNIVAC integer format or 36-bit UNIVAC floating point format (depending on format specifications). Data are organized on the input files by film reel (or run number), with a separate input file for each camera site (see section 1.8 for a more detailed description). Direct access tables accompany each input file. Input/output is accomplished with a general purpose I/O package (reference 1) which reads/writes FIELDATA (NBDL archival standard) within the context of an ASCII FORTRAN programming environment. Output file formats for the reformatting program are identical to the input file formats, the only difference being that all values in the output data records are positive.

The reformatting program accomplishes the following:

- (1) Prepares UNIVAC-compatible photo data for subsequent computation of three-dimensional trajectories (of test subjects) by converting manually digitized photo data into the format of computer-tracked photo data.
- (2) Accomplishes input/output of data with standardized I/O access methods.

C. Main Program Description:

CONTROL OF CONTROL CON

SGFLIP (see Appendix 3b for listing) - This is the driver program which controls all program operations. The only subroutines utilized are those belonging to the photo data ASCII FORTRAN I/O program. A single input card identifies (a) the number of input files, (b) the lowest run number to be processed and (c) the highest run number to be processed (see Appendix 3a for card format). The number of input files and the run number range (from the input card) are used to index a loop which systematically (a) reads data records, (b) scans them for negative data points and (c) changes negative values to positive values. Once a data record is completely processed it is rewritten to the input file unless no negative values were found (see Figures 2b-2f for input/output record formats).

4. Operation of Photo Data Reduction System

- A. Introduction. This section describes the actual UNIVAC 1100/83® production runstream which controls data reduction processing of NBDL photo data prior to its input to the EASYFLOW runstream.
- B. <u>Discussion</u>. As previously noted, there are three main processing steps in the <u>photo data</u> reduction process; conversion, plotting and reformatting. Each step performs an integral function independent of the other steps. This modular organization of steps provides several benefits:
- (1) Any step can be performed independently from the others; i.e., each step has stand-alone capability.
 - (2) Modifications to steps can be effected with:
 - (a) Complete non-interference with other steps.
- (b) Expediency in that all necessary changes take place in a single module.
 - (3) Input/output may be examined at any point between steps.
- (4) Additional steps may be added to the overall process without altering any existing steps, thus providing a desirable environment for enhancements to the system.

Each step, or module, shall heretofore be referred to as an element. Element is a UNIVAC term describing a collection of computer commands. When it is desired to execute an element, or step, the computer is instructed to carry out all commands in that element. The production runstream described in this section executes a collection of three such elements:

- (1) XOTCVT is the conversion element.
- (2) XQTPLT is the plot element.
- (3) XQTSGN is the reformatting (sign change) element.

The first element to be executed is the conversion element XQTCVT (see Appendix 1a). The main function of this element is to execute the photo conversion program. Additionally, the output of the conversion program is written to a UNIVAC data tape. In sequence, the conversion element (1) copies a PDS data tape onto disk, (2) executes the photo conversion program and (3) writes the output (from the conversion program) to a UNIVAC data tape. The UNIVAC tape is saved for 10 days as a precautionary measure. The key output from the conversion element is the converted photo data written to disk by the conversion program.

If it is necessary to correct for PDS operator error (see section 1.8.) the conversion element is altered to include correction options. These options are input to the element in card image via the UNIVAC EDIT processor (see reference 5). The EDIT processor commands are part of the production runstream. Thus the runstream actually edits the conversion element before executing it. The correction options allow for rectification (by the conversion program) of instances where the PDS operator:

- (1) Enters incorrect run numbers on PDS header records.
- (2) Outputs data to a PDS tape for two film reels with the same run number and camera site ID (on the header record).
 - (3) Enters incorrect camera site ID's on PDS header records.

The first card image of options (input with the EDIT processor) indicates the number of film reels to be corrected for each of the three categories of problem cases. A card image then follows for each occurrence of a problem case (1); it specifies the run number and camera site ID of (the header record for) the problem film reel as well as the occurrence (of this unique combination) to be corrected. It also specifies the correct run number to replace the incorrect field in the header record. After the last correction card image for case (1), card images follow for case (2). Each of these specifies the run number and camera site ID of the problem reel. The first occurrence of this combination of run number and site ID (in a PDS header record) is bypassed and only the second occurrence (of PDS records with this header identification) is converted to UNIVAC format. Lastly, the correction card images for case (3) follow. Each specifies the run number, camera site ID and

occurrence index for the problem reel. Additionally, it contains the correct camera site ID. If no corrections are necessary on the PDS input tape, only one card image is input. It indicates quantity zero for each of the three problem cases.

The EDIT processor not only controls input of all correction options to the conversion element, but it also is used to enter the reel number of the PDS data tape to be used as input to the photo conversion program. As with the EDIT commands for correction options, these commands also constitute a portion of the overall production runstream.

The second element of the runstream to be executed is the plot element XQTPLT. Its primary function is to execute the plot program for photo data. Additionally, the disk file of DISSPLA® plot commands (output from the plot program) is used as input to the FR80® post-processor program to produce production quality microfiche and hardcopy of all plots. In sequence, the plot element (1) executes the plot program for photo data (the plot program uses photo data residing on disk as input), (2) executes the FR80® post-processor program and (3) writes the disk file of plot commands to a catalogued disk file for public access. As previously noted the plot program uses output from the conversion program as its input. This input consists of disk files of photo data, one for each camera site (1, 2 or 3) used in a series of runs. Output from the plot program, a disk file of DISSPLA® plot commands, serves as input to the FR80® post-processor. The post-processor interprets the plot commands in order to produce microfiche and hardcopy of all plots generated by the plot program (these include the x-y film frame plots and x-y trajectory plots). These plots are used in error detection analysis and are maintained on-site.

Certain plot options exist and are input to the plot element via the UNIVAC EDIT processor. The EDIT commands constitute part of the production runstream (see Figure 8); they are used to edit the plot element before executing it. A single card image contains all the plot options. These options include:

- (1) Number of input files.
- (2) Time record analysis option.
 - (a) Output to line printer.
 - (b) Output DISSPLA® plot commands to disk file.
 - (c) Do not output to any device.
- (3) X-Y trajectory plot option.
 - (a) Output DISSPLA® plot commands to disk file.
 - (b) Do not output to any device.

- (4) X-Y film frame plot option.
 - (a) Output DISSPLA® commands to disk file.
 - (b) Do not output to any device.
- (5) Plot direction option for x-y film frame plots*.
- (a) Plot five columns to a page with frame number increasing in each column (plot direction always downward).
- (b) Plot five columns to a page with frame number increasing in columns 1, 3 and 5 (plot direction downward) and decreasing in columns 2 and 4 (plot direction upward).
 - (6) Lowest run number to be plotted
 - (7) Highest run number to be plotted

In an input file each run number identifies the header record for a single film reel; photo data is plotted for this range of run numbers (or film reels).

Once the plot program has been executed, the plot element executes the FR80® post-processor program to produce microfiche and hardcopy of all generated plots. The plot (disk) file is then copied to a catalogued disk file.

The third and final element of the production runstream is the reformatting element. The primary function of this element is execution of the reformatting (sign change) program. The element also generates a UNIVAC data tape containing output from the reformatting program. This data tape is saved for 180 days and is used as input to the EASYFLOW data reduction and analysis system. In sequence, the reformatting element (1) executes the reformatting program and (2) saves the output on a UNIVAC data tape. The reformatting program uses photo data residing on disk (output from the conversion program) as input. These same files, after being reformatted to reflect automatically digitized photo data, are output to the UNIVAC data tape.

The UNIVAC EDIT processor is utilized (in the production runstream) to input (1) reformatting program options and (2) the output tape file name. The input options include:

- (1) Number of input files.
- (2) Lowest run number to be processed
- (3) Highest run number to be processed

In an input file each run number identifies the header record for a single film reel; photo data is reformatted for this range of run numbers (or film reels).

 \star This option is used only in the event x-y film frame plots are generated.

- C. Production Runstream. The photo data reduction runstream is a collection of computer commands designed to execute the three steps (elements) in the data reduction process. The runstream consists of (1) UNIVAC Operating System commands (see reference 3) and (2) UNIVAC EDIT processor commands (see reference 5). All three elements to be executed are stored in a single program file. The runstream (1) copies the program file onto a scratch disk file, (2) enters the input options for each element and (3) executes each element. The only input to the runstream is a single PDS data tape containing digitized photo data. Output from the runstream includes:
 - (1) A 10-day UNIVAC data tape of converted photo data.
- (2) Catalogued disk file containing DISSPLA® plot commands for all generated plots.
 - (3) Microfiche and hardcopy of all generated plots.
 - (4) A 180-day UNIVAC data tape of converted and reformatted photo data.
 - (5) Line printer listing containing:
 - (a) Time record analyses.
 - (b) Operating system diagnostics.
 - (c) User-generated diagnostics.
 - (d) Operating system accounting information.

Several considerations entered into the design of the photo data production runstream. The more significant of these are noted as follows:

- (1) In storing plot commands on a catalogued disk file, plots can be generated as many times as necessary (and on several plotting devices) without once repeating execution of the actual plot program.
- (2) In some instances (a film reel of) photo data is redigitized in order to improve data quality. It is important (in computing 3-dimensional position of the test subject) that a minimum total of three targets (not all from the same camera site) are digitized successfully for a given test run; these targets may be tracked from any of the available film reels (camera sites) for the run. If the PDS computer cannot successfully locate enough targets (through computer-controlled tracking), the PDS operator generates another data tape in which (s)he manually digitizes (with the x-y crosshairs) the necessary targets.

The production runstream is designed to reprocess the new PDS data tape with a minimum of operator preparation. It is also equipped with the option to process redigitized data residing on the same PDS tape as the initial data (for the same film reel). The production runstream also creates UNIVAC data tapes directly after (a) conversion and (b) reformatting in order to make data available for further analysis, error correction, and reprocessing.

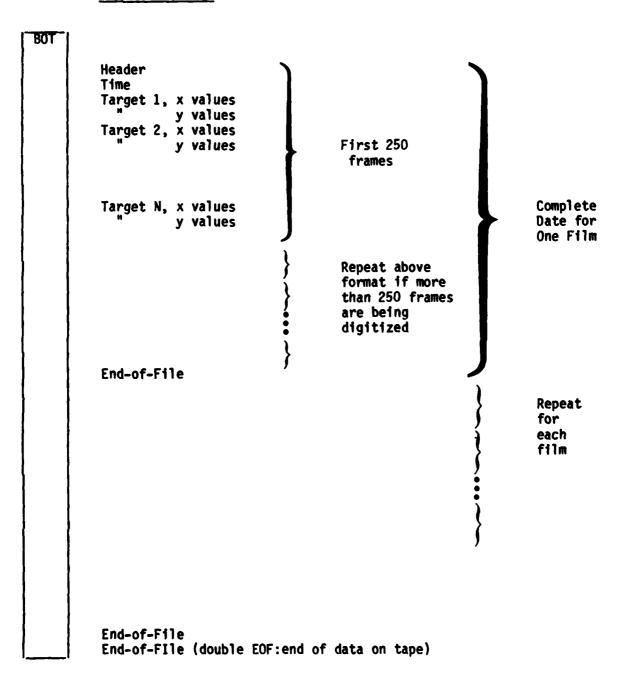
- (3) The individual cameras (used in the experiments) are calibrated to provide mathematical camera constants vital in the computation of three-dimensional position (of the test subject). Examples of camera constants are the camera nodal point coordinates (x, y and z) and the lens distortion parameter. These values and other camera constants are generated by a camera-calibration program which uses as input converted data from a camera-calibration film reel. The photo data production runstream is designed to, with slight modification, execute the camera-calibration conversion program. This altered runstream is included as an element in the program file containing all photo data reduction programs.
- (4) The modular organization of the steps (elements) in the photo data reduction process allows for efficient and expedient expansion of functions. New elements can be added without changing any existing elements. This feature affords the system a desirable flexibility. Standardized data formats and I/O access methods provide further flexibility. Possible additional functional elements are listed below:
- (a) Error editing elements which correct improper data values in the data file.
- (b) Packing elements which combine data files (and accompanying directories) from multiple tapes onto a single tape (with one all-inclusive directory).
- (c) Plot elements which allow plot selection of individual photo variables residing on a converted photo data file.
- (d) Special analysis elements which extract the data easily through the use of standardized data file formats and standardized I/O access methods.

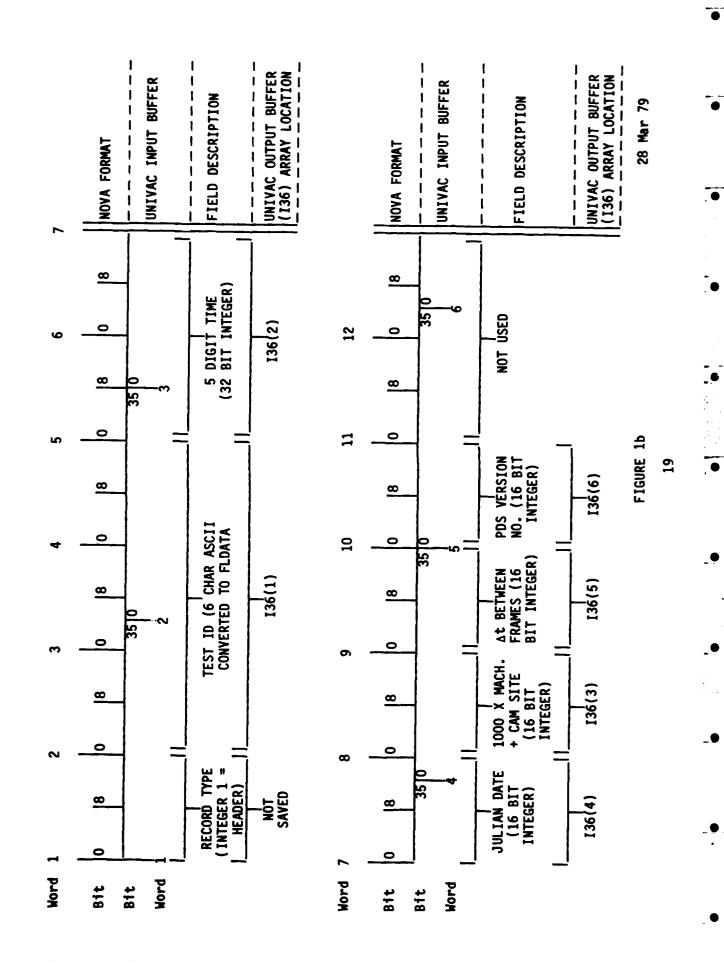
Operational particulars of the runstream are as follows:

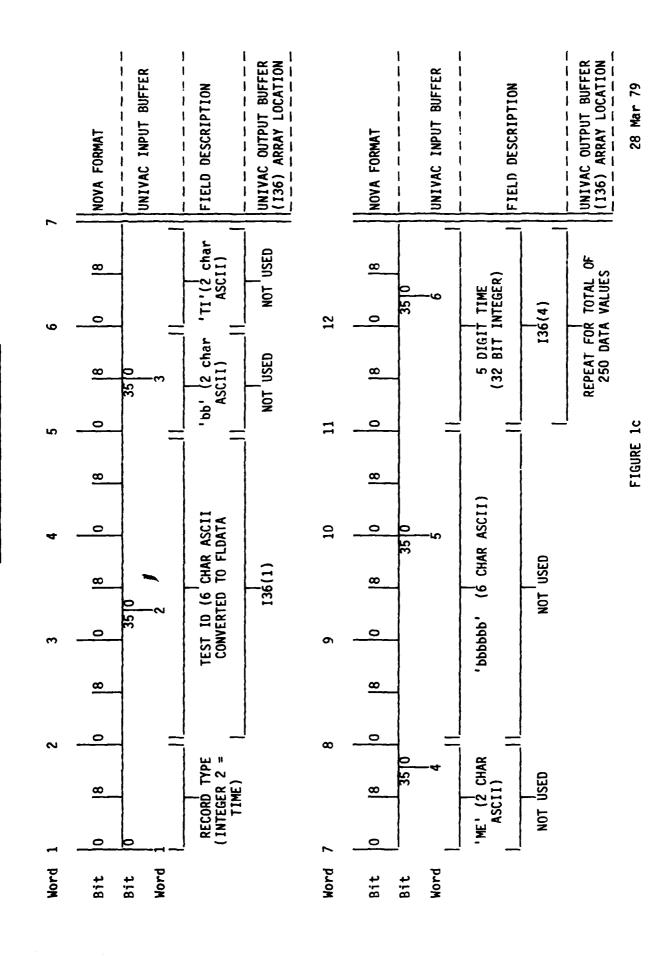
(1) Program File:

DATASYSTEMS*PHOTOSTREAM.

- (2) Programming Languages:
 - (a) UNIVAC ASCII FORTRAN Level 10R1
 - (b) UNIVAC Executive System EXEC Level 38R5
 - (c) UNIVAC Text Editor Level 16R1

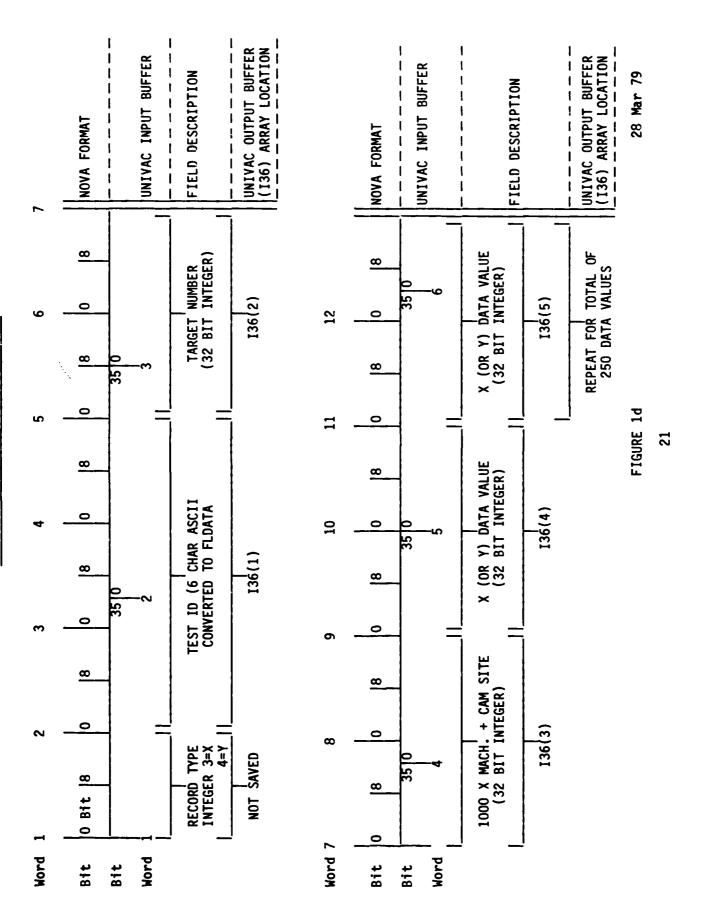

CONCLUSION


The photo data reduction and analysis system has been revised to successfully meet all proposed objectives:


- 1. All constituent programs are now compatible with announced changes in the UNIVAC operating system. These changes incorporate an ASCII FORTRAN programming environment.
- 2. A new graphics support capability is now utilized to:
- a. Improve error detection procedures by providing additional plot presentations.
- b. Produce output compatible with a variety of graphics devices (such as the Tektronix 4014® and the Hewlett Packard 7220®).
- c. Reduce turn-around time of analysis by providing for immediate review of plots.
- 3. A stand-alone runstream providing for greater operator efficiency is now in effect. In addition, all component programs exist in a single program file.
- 4. Standardized data formats and I/O access methods, which in unison provide compatibility with stored archival data, are now incorporated into photo data reduction processing.
- 5. A modular organization of software is now incorporated in order to provide for greater operational flexibility.

PDS OUTPUT TAPE FORMAT

RECORD SEQUENCE



Ī

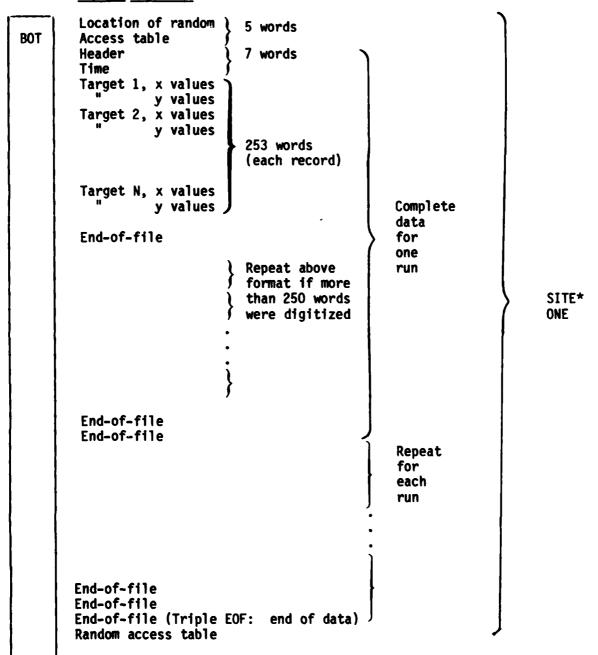
20

HEADER FORMAT (PDS DATA)

16 Bit Word	Contents
1	Record type: 1 (16 bit integer)
2 3 4 5	Test ID (6 character ASCII)
5 (Time of first frame in units of the least significant
6}	LED digit (32 bit integer)
7	Julian date digitized: DDDY (16 bit integer)
8	1000 X machine # + camera site # (16 bit integer)
9	Δt: expected time between successive frames, in units of the least significant LED digit (16 bit integer)
10	Program version number (16 bit integer)
11	Not used
12	Not used

TIME RECORD FORMAT (PDS DATA)

16 Bit Word	Contents
1	Record type: 2 (16 bit integer)
2 3 4	Test ID (6 character ASCII)
5 6 7 8 9	'ช่ง TIME ช่งช่งช่ง' (12 character ASCII)
10)	
11 12	Time of frame 1 in units of the least significant LED digit (32 bit integer)
•	
509 }	Time of frame 250
510 J 512	Not used
513	Not used (fixed length record)


X (OR Y) COORDINATE RECORD FORMAT (PDS DATA)

Contents
Record type: 3=x values (16 bit integer) 4=y values
Test ID (6 character ASCII)
Target # (32 bit integer)
Julian date on film: DDDY (16 bit integer) x (or y) value for target in frame 1: displacement from a fixed location in the filmplane in units of .00001 inches. Negative value indicates manual entry was made using the
crosshairs. Zero indicates location of target was not defined for this frame. (32 bit integer)
x (or y) value for target in frame 250
Not used Not used (fixed length record)

FILE FORMAT FOR UNIVAC

COMPATIBLE PHOTO DATA

RECORD SEQUENCE

^{*} Above block of data copied from mass storage to tape using @ copy. There are 3 blocks of site one data copied to tape followed by 3 blocks of site 2 followed by 3 blocks of site 3.

May 5, 1982

RECORD FORMAT FOR LOCATION OF RANDOM ACCESS TABLE FOR UNIVAC COMPATIBLE PHOTO DATA

WORD	CONTENTS
1	Sector address of random access table (integer)
2	Number of runs in this block of data (integer)
3	Site ID (integer)
4	Not used
5	Not used

HEADER RECORD FORMAT FOR UNIVAC

COMPATIBLE PHOTO DATA

FIELD	CONTENTS
1	Run number (alpha - 6 characters) FLDATA
2	The word 'PHDATA' (alpha) FLDATA
3	Site ID (integer)
4	Time of first frame - 5 most significant digits (real)
5	Julian date: DDDY (alpha-6 char) Date digitized
6	Δt: expected time between frames (real)
7	Program version number (alpha-6 char)

TIME RECORD FORMAT FOR UNIVAC

COMPATIBLE PHOTO DATA

FIELD	CONTENTS
1	Run number (alpha - 6 characters) FLDATA
2	The word 'CTSbbb' (alpha) FLDATA*
3	Site ID (integer)
4	Time of first frame, 5 least significant digits (real)
•	
•	
•	
•	
•	
•	
•	
253	Time of 250th frame

 \star C is the camera site ID (1, 2, or 3)

DATA RECORD FORMAT FOR UNIVAC

COMPATIBLE PHOTO DATA

WORD	CONTENTS
1	Run number (alpha - 6 characters)
2	Displacement ID (alpha - 6 characters) (see Figure 4)
3	Site ID (integer)
4	X (or Y) value for target in frame 1: Displacement from a fixed location in meters. Negative value indicates manual entry was made using the crosshairs. A value of 999.0 indicates location of target was undefined for this frame. (REAL)
•	
•	
•	
•	
253	X (or Y) value for target in frame 250.

RANDOM ACCESS DIRECTORY FORMAT

FOR UNIVAC COMPATIBLE PHOTO DATA

FIELD	CONTENTS
0 1	Words following in this record (integer) RN(1) Run number for first run (alpha -
2	6 characters) FLDATA SH(1) Sector address of header for first run (integer)
3	NR(1) Number of physical records of 253 words required to make one logical record for each target for first run. This occurs when more than 250 frames are digitized for a run. Output is written in multiples of 253 word physi-
4	<pre>cal records (integer) ST(1) Sector address of time record of first physical record for first run (integer)</pre>
•	•
•	•
•	•
•	•
NR(1)+3	ST(1,NR(1)) Sector address of time record of NR physical records for first run (integer)
For J number of ru previous runs	ns where X is the number of words used by all
1+X	RN(J) Run number for Jth run FLDATA
2+X	SH(J) Sector address of header for Jth run
3+X	NR(J) Number of physical records for Jth run
4+X	ST(J,1) Sector address of time record of 1st physical record for Jth run
•	
•	•
•	•
•	•
NR(J)+X+3	ST(J,NR(J)) Sector address of time record of NR(J)th physical record for Jth run

See Figure 3 for example

EXAMPLE OF RANDOM ACCESS TABLE WITH SINGLE PHYSICAL RECORD FOR EACH TARGET

RUN NO.	SH	<u>NR</u>	ST(1)
LX3036	1	1	2
LX3037	134	1	135
LX3038	267	1	268
LX3039	400	1	401
LX3041	533	1	534
LX3042	666	1	667
LX3045	799	1	800
LX3047	932	1	933
LX3048	1065	1	1066
LX3050	1198	1	1199
LX3051	1331	1	1332
LX3053	1504	1	1505
LX3049	1637	1	1638

DISPLACEMENT ID (EZFLOW FORMAT)

CDMTTb 6 char ID (Field data)

where

C: camera site ID (1, 2, or 3)

D: coordinate component (X or Y) of data

M: mount system

1: neck*

2: mouth

3: top of head

4: pelvis

5: other

9: sprocket hole**

TT: target ID (01, 02, 03, ...)

** The sprocket hole data has the special mount/target ID of 900

^{*} The chair reference target has the special mount/target ID of 100

FILM FRAME PLOTS

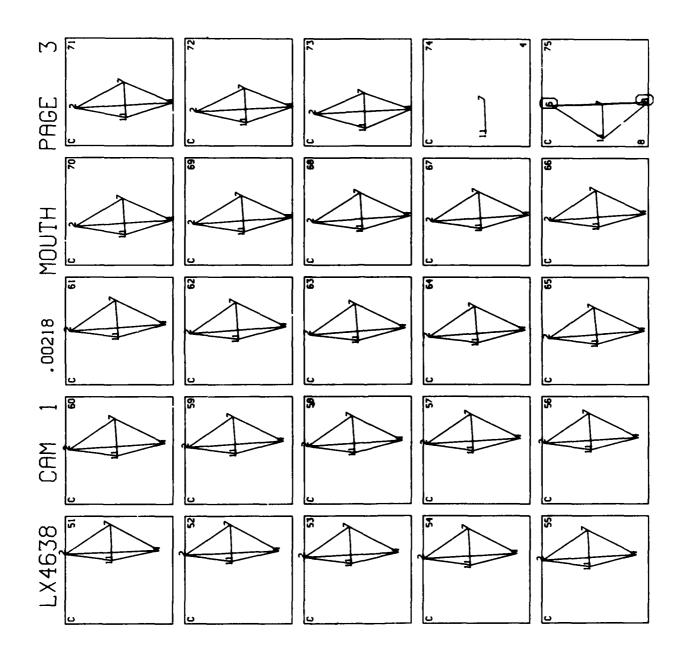
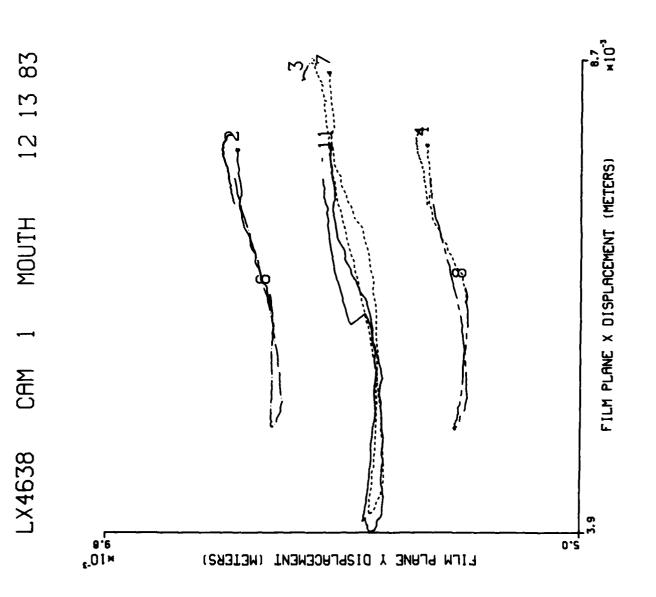



Figure 5a

J0250	P TIME	5.77223 7.7
TE .0	E D TIME	5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.
ICTED RA	FRAME	22222222222222222222222222222222222222
	P TIME	5.67.738 5.67.738 5.67.737 5.67.737 5.67.737 5.69.738 5.69.738 5.69.738 5.70.7
PRED1	E D TIME	0.000,000,000,000,000,000,000,000,000,0
	FRAME	1523 1524 1525 1526 1526 1526 1527 1727 1727 1727 1727 1727 1727 1727
	P TIME	5.57.52 5.57.52 5.57.52 5.57.53 5.5
	: O TIME	### ##################################
Æ	FRAME	24444444444444444444444444444444444444
CAMERA	P TIME	7.166 47.
	: 0 TIME	5. 47170 47170 47170 47170 47170 47170 47170 47170 47170 47170 47170 47170 6. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.
LX4642	FRAME	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	P TIME	7. 17.180 7. 17.180
	D TIME	### ### ##############################
R N	FRPPE	

PHOTO DATA REDUCTION RUNSTREAM

FIGURE 7

PHOTO DATA REDUCTION RUNSTREAM ELEMENT

ENTER EDIT PROCESSOR WHERE XXXXX=CURRENT PDS REEL NUMBER LOCATE PLACE TO INSERT CORRECTIONS INSERT CORRECTIONS (IF ANY) AS PER ELT .XQTCVT (APPENDIX 1a)	(INSERT ZEROES IF NO CORRECTIONS REQUIRED) EXIT INPUT MODE AND EDIT PROCESSOR EXECUTE CONVERSION PROGRAM ENTER EDIT PROCESSOR	LOCATE PLACE TO INSERT PLOT OPTIONS INSERT PLOT OPTIONS AS PER ELT .XQTPLT (APPENDIX 2a) REFER TO .XQTPLT FOR OPTION DEFINITIONS EXIT INPUT MODE AND EDIT PROCESSOR EXECUTE FRAME PLOT PROGRAM	ENTER EDIT PROCESSOR WHERE 11119999=FILE NAME OF 180-DAY UNIVAC OUTPUT DATA TAPE LOCATE PLACE TO INSERT INPUT OPTIONS	REFER TO .XQTSGN FOR OPTION DEFINITIONS EXIT INPUT MODE AND EDIT PROCESSOR EXECUTE REFORMATTING PROGRAM
		ГХ9999		
		LX1111		
STREAM. STREAM.		0		Гх3939
<pre>@RUN @PASSND @ASG,A DATASYSTEMS*PHOTOSTREAM. @COPY DATASYSTEMS*PHOTOSTREAM. @FREE DATASYSTEMS*PHOTOSTREAM. @ED,U .XQTCVT C /REELN/XXXXX/A FIND@XQT INPUT</pre>	(0 0 0)	FINDØXQT INPUT 3 0 0 0 0EOF 0ADD.EP .XQTPLT	<pre>@ED.U.XQTSGN C /XXXXXXXX/11119999/A FIND@XQT</pre>	INPUI 3 LX1111 0EOF 0ADD,EP.XQTSGN 0FIN

FIGURE 8

REFERENCES

- 1. J. J. Lambert, "Development of ASCII FORTRAN I/O Program for Photo Data", (NBDL:72B:jbj, 5230, 1 June 1983), New Orleans, LA, 1983.
- 2. Integrated Software Systems Corporation, "DISSPLA User's Manual", San Diego, CA, 1981.
- 3. Sperry Corporation, "Sperry UNIVAC 1100 Executive System EXEC Level 38R5 Programmer Reference", Blue Bell, PA, 1982.
- 4. Sperry Corporation, "Sperry UNIVAC Series 1100 FORTRAN (ASCII) Level 10R1 Programmer Reference", Blue Bell, PA, 1982.
- 5. Sperry Corporation, "Sperry UNIVAC 1100 Series Text Editor (ED Processor) Level 16R1", Blue Bell, PA, 1980.

```
LAMBERT *TPF$(0).XQTCVT(26)
                      1., U9H, REELN . INPUT DATA FROM DIGITIZER 9., F///300
             ♦ASG, TJ
             PASG
                      10.,F///300
             eASG
                      11.,F///300
             PASG
                      MPOOS 1/PHOTOC
             eXQT
     6
             12345678901234567890123456789012345678901234567890
                  ALL CONTROL STATEMENTS IMMEDIATELY AFTER PXQT STATEMENT
    10
                  1ST CONTROL STATEMENT
                      PDS 5 - NRD = NO. OF RUNS FOR WHICH TO CHANGE RUN NOS. MAX OF 6
    11
                       POS 10 - NRB = NO. OF RUNS TO BYPASS ON THIS TAPE. MAX OF 6
    12
                                           (SEE NOTE IN PGM MAIN)
    13
                      PDS 15 - NRC = NO. OF RUNS REQUIRING A CHANGE IN CAM NO. MAX OF 6
    14
    15
                  2ND CONTROL STATEMENT (1 REQUIRED FOR EACH MAGNITUDE OF NRD)
    16
                      POS 5-10 - LR = OLD RUN NUMBER
    17
                      POS 15-20 - NR = NEW RUN NUMBER
    18
                      POS 35 - IC = CAMERA NO. FOR WHICH RUN NO. IS TO BE CHANGED POS 30 - IP = OCCURRENCE OF RUN NO. TO BE CHANGED, 1ST, 2ND, ETC.
    19
    20
                    MAY BE MORE THAN ONE OF ABOVE CONTROL STATEMENT
    21
    22
                  NEXT CONTROL STATEMENT (1 REQUIRED FOR EACH MAGNITUDE OF NRB)
    23
                      POS 5-10 - IRN = RUN NUMBER TO BYPASS
POS 15 - ICN = CAMERA NO. FOR WHICH TO BYPASS RUN
    25
                    MAY BE MORE THAN ONE OF ABOVE CONTROL STATEMENT
    26
    27
                  NEXT CONTROL STATEMENT (1 REQUIRED FOR EACH MAGNITUDE OF NRC)
    28
                      POS 5-10 - LRN = RUN NUMBER
POS 15 - LCN = DLD CAMERA NUMBER
    29
    30
                                  - NCN = NEW CAMERA NUMBER
                      POS 20
POS 25
    31
                                 - NOC = OCCURRENCE OF CAMERA TO CHANGE, 1ST, 2ND, ETC.
    32
                    MAY BE MORE THAN ONE OF ABOVE CONTROL STATEMENT
    33
    34
             @FREE
    35
                       TNE/O/S6
              OTEST
    36
    37
              ØJUMP
                      OUT
                          A., U9S, SAVEO1 . PREPLOTPHOTODATA
              ASG, TF
    38
    39
              eCOPY, GM
                          9.,A.
              eTEST2:
    40
              eTEST
                        TG/1/S6
    41
                        TEST3
              QUUMP
    42
              OCOPY.GM
    43
                          10. . A.
              eTEST3:
     44
                        TG/2/S6
    45
              eTEST
    46
              @JUMP
                        OUT
              OCOPY . GM
                         11.,A.
     47
              OUT:
     48
              eFREE
     49
              . EXITED FROM .XQTCVT
    50
```

PRT,S .MAIN

```
LAMBERT * TPF$(0). MAIN(37)
                 THIS PROGRAM WILL READ DIGITIZED PHOTODATA IN PDS OUTPUT
                 FORMAT AND CONVERT TO UNIVAC 1182 FIELDATA FORMAT.
                 SEPARATE FILE IS GENERATED FOR EACH CAMERA SITE ID.
                NRD = NUMBER OF RUNS REQUIRING A CHANGE IN THE RUN NUMBER.
                      THE RUN NUMBER MAY OR MAY NOT BE DUPLICATED.
                LR = OLD RUN NUMBER
                NR = NEW RUN NUMBER
                IC - CAMERA NUMBER FOR WHICH A RUN NUMBER IS TO BE CORRECTED
                IP = OCCURRENCE OF RUN NUMBER TO BE CHANGED, 1ST, 2ND, ETC.
    10
                NRB = NUMBER OF RUNS TO BYPASS ON THIS TAPE
    13
            С
                IRN = RUN NUMBER TO SKIP
                ICN = CAMERA NUMBER FOR WHICH TO SKIP RUN
            C
    15
    16
    17
                       IT IS ASSUMED THAT WHEN A RUN IS TO BE BYPASSED, IT HAS
                       BEEN PREVIOUSLY DIGITIZED AND PLACED IN THE FILE, AND
                       LATER RE-DIGITIZED AND PLACED IN THE FILE AFTER A GROSS
            C
                       ERROR WAS DISCOVERED. THE FIRST OCCURRENCE OF THE RUN IS
    20
             C
                       ALWAYS BYPASSED.
    21
    22
    23
                 NRC = NUMBER OF RUNS REQUIRING A CHANGE IN CAMERA NUMBER
             С
                 LRN = RUN NUMBER
                 LCN = OLD CAMERA NUMBER
    26
            С
                 NCN = NEW CAMERA NUMBER
    27
                 NOC = OCCURRENCE OF CAMERA NUMBER TO BE CHANGED, 1ST, 2ND, ETC
    28
    29
    30
                   DIMENSION LCN(6), NCN(6), NDC(6), ITRY(6), ICCD(6)
DIMENSION IC(6), IP(6), ICN(6), IPAS(6)
    31
    32
                   DIMENSION ITABLE(5), JTABLE(4000), ICAM(3)
    33
                   COMMON/PHTHDR/RUNID, VARID, ISITID, FITIME, JDTDIG, DELTA, IPGVER
    34
                   COMMON/I36/IOUT(3), DATA(250), IDL, IUNIT, ITARG
    35
                   CHARACTER*6 RUNID, VARID, LR(6), NR(6), IRN(6), FD2ASC,
    36
    37
                  1LRN(6), JDTDIG, IPGVER, RUN(100,3)
    38
             С
    39
                   DATA IOUT/9,10,11/
                   FORMAT(1X,14)
              68
                   IERR=0
    42
    43
                   IUNIT=1
    44
    45
                 READ CORRECTION INFORMATION
             C
    46
    47
                   READ (5,230) NRD, NRB, NRC
    48
                   PRINT 230, NRD, NRB, NRC
            C
    49
                   IF (NRD.EQ.O) GO TO 20
    50
                   DO 10 J=1,NRD
    51
    52
                     READ (5,240) LR(J),NR(J),IC(J),IP(J)
                     PRINT 240, LR(J).NR(J),IC(J),IP(J)
                   CONTINUE
    54
             10
    55
                   IF (NRB.EQ.O) GO TO 40
            20
    56
    57
                   DO 30 J=1,NRB
                     READ (5,250) IRN(J), ICN(J)
    58
                     PRINT 250, IRN(J), ICN(J)
```

```
CONTINUE
60
         30
61
          40
                 IF (NRC.EQ.O) GO TO 60
62
                DO 50 J=1,NRC
63
64
                   READ (5,250) LRN(J), LCN(J), NCN(J), NOC(J)
65
                   PRINT 250, LRN(J), LCN(J), NCN(J), NOC(J)
66
         50
                CONTINUE
67
          60
                CONTINUE
68
69
         C
70
                NC=O
71
72
          70
                CONTINUE
73
                READ RECORD FROM PDS TAPE
74
75
         C
76
                CALL CONVT(ITYPE.IST)
77
                 IF (IST.NE.4) GO TO 210
78
         C
79
                 IF (ITYPE.NE.1) GO TO 70
                 IF (NRD.EQ.O) GO TO 100
80
                DO 90 J=1,NRD
81
                   IF (RUNID.EQ.LR(J).AND.ISITID.EQ.IC(J)) ITRY(J)=ITRY(J)+1
IF (RUNID.EQ.LR(J).AND.ISITID.EQ.IC(J).AND.ITRY(J).EQ.IP(J))
82
83
84
                  RUNID=NR(J)
          90
85
                CONTINUE
86
          100
                IF (NRB.EQ.O) GO TO 120
87
88
                DO 110 J=1,NRB
                   IF (RUNID.EQ.IRN(J).AND.ISITID.EQ.ICN(J).AND.IPAS(J).EQ.O)
89
                1 GO TO 190
 90
91
          110
                CONTINUE
92
                PROCESS RUNS CONTAINING INCORRECT CAMERA NUMBERS
93
         C
94
95
          120
                 IF (NRC.EQ.O) GO TO 140
96
                DO 130 J=1,NRC
97
                   IF(RUNID.EQ.LRN(J).AND.ISITID.EQ.LCN(J))
98
                   ICCD(J)=ICCD(J)+1
                   IF (RUNID.EQ.LRN(J).AND.ISITID.EQ.LCN(J).AND.NOC(J).EQ.
99
                   ICCD(J)) ISITID=NCN(J)
100
101
          130
                CONTINUE
102
103
          140
                 CONTINUE
104
          C
105
                 ISW=ISITID
                 IF (ISW.LE.O.OR.ISW.GT.3) GO TO 150
106
107
          C
108
                 DETERMINE WHICH CAMERA NUMBER TO PROCESS
109
          С
110
                 GO TO (160, 170, 180), ISW
          C
111
112
          150
                CONTINUE
                PRINT 270, RUNID, ISITID, ISW
STOP 'CAM NO. ERROR'
113
115
          C
          160
                CONTINUE
116
117
                 CONVERT DATA FOR CAMERA 1
118
```

```
120
                CALL CNVT1(ITYPE, IST)
                IF (NC.LT.2) NC=1
GO TO 70
121
122
123
         C
124
          170
                CONTINUE
125
                CONVERT DATA FOR CAMERA 2
126
127
         C
                CALL CNVT1(ITYPE, IST)
128
                IF (NC.LT.3) NC=2
GO TO 70
129
130
131
         C
132
          180
                CONTINUE
133
         C
                CONVERT DATA FOR CAMERA 3
134
          C
135
         C
                CALL CNVT1(ITYPE, IST)
136
137
                NC=3
138
                GO TO 70
139
         C
          190
                CONTINUE
140
141
                IPAS(J)=1
142
          C
                BYPASS CURRENT RUN
143
          C
144
145
           200
                CALL CONVT(ITYPE, IST)
                IF (1ST.EQ.4) GO TO 200
146
                GO TO 70
1.17
          С
148
149
          210
                CONTINUE
150
151
          C
                WRITE TRIPLE END-OF -FILE AT END OF DATA
152
153
                DO 220. I=1,NC
                DO 225, J=1.3
CALL EOFPUT(10UT(1).1ER)
154
155
156
                 IF(IER.NE.O)THEN
157
                   PRINT 13, IER
158
                   STOP 'ABORT IN MAIN'
159
                END IF
           225
                CONTINUE
160
                CONTINUE
161
           220
162
          C
163
                 SET CONDITION WORD TO NUMBER OF CAMERAS
164
          C
                CALL FCOND(ICOND)
165
                BITS(ICOND, 25, 12) = BITS(NC, 25, 12)
166
                CALL FSETC(ICOND)
167
168
          С
                PRINT DIRECT ACCESS TABLES
169
          C
170
171
                PRINT 251
172
                MAX=4000
                DO 300, 1=1,NC
173
                CALL GETDIR(IOUT(I), MAX, O, ITABLE, IER)
174
                 IF(IER.NE.O)STOP 'DIRECTORY ERR'
175
176
                 ICAM(I)=ITABLE(3)
177
                 NRUNS=ITABLE(2)
178
                 ISECT-ITABLE(1)
                 PRINT 211, ICAM(I)
179
```

```
CALL GETDIR(IOUT(I), MAX, ISECT, JTABLE, IER)
181
                  IF(IER.NE.O)STOP 'DIRECTORY ERR'
182
                  IPRINT=2
                  DO 296, J=1, NRUNS
RUN(NRUNS, ICAM(I))=FD2ASC(JTABLE(IPRINT),6)
183
184
                  PRINT 221, RUN(NRUNS, ICAM(I)), (JTABLE(K), K=IPRINT+1, IPRINT+1+
185
186
                 1JTABLE(IPRINT+2)+1)
187
                  IPRINT=IPRINT+3+JTABLE(IPRINT+2)
                  CONTINUE
188
            296
                  PRINT 231, (ITABLE(K), K=1,5)
189
190
            300
                  CONTINUE
191
           С
192
                  STOP
193
           С
194
            13
                  FORMAT(1X, 'STATUS ERROR = ',03)
                  FORMAT (2(4X,A6),215)
           230
195
196
           240
                  FORMAT (4X,A6,315)

FORMAT (' READ ERROR, STATUS = ',13)

FORMAT (' CAMERA NUMBER ERROR, RUN = ',A6,2110)
197
           250
198
           260
199
           270
200
           251
                  FORMAT('1')
                  FORMAT(' DIRECT ACCESS TABLE FOR CAMERA ',12)
201
           211
                  FORMAT(1X,5(16,4X)//)
FORMAT(1X,A6,2X,1318)
202
           231
203
           221
204
           С
205
                  END
```

ePRT,S .CONVT

```
LAMBERT+TPF$(0).CNVT1(7)
                             SUBROUTINE CNVT1(ITYPE, IST)
        3
                             FUNCTION:
                                CONTROL (1) READ OF DIGITIZED PHOTO DATA FROM PDS TAPE
                   C
                   C
                                (2) CONVERSION TO UNIVAC COMPATIBLE FORMAT AND (3) SCALING
                   С
                            ARGUMENT DEFINITIONS:
                                ITYPE-RETURNED PDS RECORD TYPE WHERE 
1=HEADER RECORD
       10
                   С
                                   2=TIME RECORD
                   С
      12
                                   3=X DATA RECORD
                                   4=Y DATA RECORD
                                IST-RETURNED ERROR STATUS WORD FROM ADTIO GENERAL
                                      PURPOSE I/O ROUTINE
      15
      16
                            COMMON/PHTHDR/RUNID, VARID, ISITID, F1TIME, JDTDIG, DELTA, IPGVER
      17
      18
                             COMMON/136/IOUT(3),DAT(250),IDL,IUNIT,ITARG
      19
                             CHARACTER*6 VAR1C1(28), VAR2C1(28), VAR3C1(28), VARCC1(28)
                             CHARACTER*6 VAR1C2(28), VAR2C2(28), VAR3C2(28), VARCC2(28)
      20
      21
                             CHARACTER+6 VAR3C3(28)
                            CHARACTER*6 RUNID, VARID, JDTDIG, IPGVER, B(28), TARNUM*3, CAMNO*1
      22
                           1. OLDRUN
      23
      24
      25
                            DEFINE MOUNT/TARGET ID'S
      26
      27
                            DATA VARIC1 /'1X100','1Y100','1X102','1Y102'
                           1/1X103','1Y103','1X101','1X201','1X201','1Y201',
2/1X204','1Y204','1X203','1Y203','1X308','1Y308',12*''/
DATA VAR2C1 /'1X100','1Y100','1X103','1Y103','1X105',
      28
      29
      30
                           1'1Y105','1X104','1Y104','1X101','1Y101','1X201','1Y201','1X204',
2'1Y204','1X205','1Y205','1X203','1Y203','1X310','1Y310',8*''/
      31
                            DATA VAR3C1 /'1X100','1Y100','1X212','1Y212','1X204'
      33
                          1'1Y204'.'1X208'.'1Y208'.'1X210'.'1Y210'.'1X202'.'1Y202'.'1X211'.
2'1Y211'.'1X209'.'1Y209'.'1X207'.'1Y207'.'1X010'.'1Y010'.8+'''
DATA VARCC1 /'1X100','1Y100','1X002'.'1Y002'.'1X003'.
      34
      35
      36
                           1'1Y003','1X004','1Y004','1X005','1Y005','1X201','1Y201','1X204',
2'1Y204','1X205','1Y205','1X203','1Y203','1X310','1Y310',8*''/
      38
                           DATA VAR1C2 /'2X100','2Y100','2X203','2Y203',
1'2X204','2Y204','2X202','2Y202',20*''/
      39
      40
                           DATA VAR2C2 /'2X100','2Y100','2X205','2Y205','2X204',
1'2Y204','2X202','2Y202','2X203','2Y203',18*''/
      41
      42
                            DATA VAR3C2 /'2X100','2Y100','2X103','2Y103',
      43
                          1'2X105','2Y105','2X101','2Y101','2X102',
2'2Y102','2X201','2Y201','2X202','2Y202','2X205','2Y205','2X204',
3'2Y204','2X203','2Y203','2X011','2Y011','2X012','2Y012',4*''/
DATA VARCC2 /'2X100','2Y100','2X103','2Y103','2X105','2Y105',
      45
      46
      47
                           1'2X101','2Y101','2X102','2Y102','2X201','2Y201','2X202',
2'2Y202','2X205','2Y205','2X204','2Y204','2X203','2Y203',8*' '/
      48
      49
                          DATA VAR3C3 /'3X100','3Y100','3X106','3Y106','3X111','3Y111',
1'3X102','3Y102','3X101','3Y101','3X103','3Y103','3X107','3Y107',
2'3X108','3Y108','3X105','3Y105','3X104','3Y104','3X109','3Y109',
3'3X110','3Y110',4*''/
      50
      52
      53
      54
                            OLDRUN='
      55
      56
      57
                   C
      58
                             CONVERTS AND SCALES PHOTO DATA
```

```
DO 90 KP=1,1000
60
                    DO 10 J=1,250
DAT(J)=0.0
61
62
          10
                    IF (ITYPE.NE.1) GO TO 20
63
64
65
          C
66
                 CHECK FOR MORE THAN 250 FRAMES OF DATA.
 67
68
69
                    IF (RUNID.EQ.OLDRUN) GO TO 30
70
                    OLDRUN=RUNID
                    VARID='PHDATA'
71
72
73
                 WRITE HEADER
 74
75
                    CALL PUTRCD(IOUT(ISITID), RUNID, VARID, ISITID, IDL, DAT, IER)
                    IF(IER.NE.O)GO TO 112
76
77
                    PRINT 190, RUNID, VARID, ISITID, F1TIME, JDTDIG, DELTA, IPGVER, ITYPE
78
 79
                 READ NEXT PDS RECORD
80
                    CALL CONVT(ITYPE,IST)
IF (IST.NE.4) GO TO 100
81
           20
82
                    IF(ITYPE.EQ.1)GO TO 90
83
84
                    GO TO 40
85
86
                 HANDLES EOF'S FOR MORE THAN 250 FRAMES
87
          C
88
                    CALL EOFPUT(IOUT(ISITID), IER)
89
          30
90
                    IF(IER.NE.O)GO TO 112
91
                    CALL CONVT(ITYPE.IST)
                    IF (IST.NE.4) GO TO 100
92
93
94
          C
                 DETERMINE VARIABLE NAMES FOR A GIVEN CAMERA.
95
          C
96
          C
97
98
          40
                    CONTINUE
                 CHANGE DATA TO METERS & SET ZERO VALUES IN NON-TIME RECORDS EQUAL
99
                    VARID=
100
                    ENCODE (1,160,CAMNO) ISITID
101
                    SUBSTR(VARID, 1, 1) = CAMNO
102
103
                    IF(ITYPE.EQ.2)SUBSTR(VARID,2,2)='TS'
104
                    IF (ITYPE.EQ.2) GO TO 70
105
                    IF (BITS(ITARG, 5, 16). NE.O) GO TO 60
                    IF (RUNID.LT.'LX0253') NOT=1
IF (RUNID.LT.'LX1410') NDT=2
IF (RUNID.GE.'LX1410') NDT=3
106
107
108
                    IF ((RUNID.EQ.'LX1234').OR.(RUNID.EQ.'LX1235').OR.(RUNID.EQ.
109
110
                 1'LX1236').DR.(RUNID.EQ.'LX1237')) NDT=4
                    DO 50 J=1,28
111
                      IF ((ISITID.EQ.1).AND.(NDT.EQ.1)) B(J)=VAR1C1(J)
IF ((ISITID.EQ.1).AND.(NDT.EQ.2)) B(J)=VAR2C1(J)
112
113
                      IF ((ISITID.EQ.1).AND.(NDT.EQ.3)) B(J)=VAR3C1(J)
IF ((ISITID.EQ.1).AND.(NDT.EQ.4)) B(J)=VARCC1(J)
114
115
                       IF ((ISITID.EQ.2).AND.(NDT.EQ.1)) B(J)=VAR1C2(J)
117
                       IF
                          ((ISITID.EQ.2).AND.(NDT.EQ.2)) B(J)=VAR2C2(J)
                       IF ((ISITID.EQ.2).AND.(NDT.EQ.3)) B(J)=VAR3C2(J)
118
                       IF ((ISITID.EQ.2).AND.(NDT.EQ.4)) B(J)=VARCC2(J)
119
```

```
IF ((ISITID.EQ.3).AND.(NDT.EQ.3)) B(J)=VAR3C3(J)
120
                   CONTINUE
121
          50
122
                   ITT=2+ITARG
                   IF (ITYPE.EQ.3) VARID=B(ITT-1)
IF (ITYPE.EQ.4) VARID=B(ITT)
123
124
125
                   GO TO 70
126
          60
                   CONTINUE
127
                    IF(ITYPE.EQ.3)SUBSTR(VARID,2,1)='X'
                   IF(ITYPE.EQ.4)SUBSTR(VARID,2,1)='Y'
128
                   NTC=BITS(ITARG, 5, 16)
129
130
                   ENCODE (3,170, TARNUM) NTC
131
                   SUBSTR(VARID, 3, 3) = TARNUM
132
                    CONTINUE
                    DO 80 J=1,250
133
                      IF (ITYPE.EQ.2) DAT(J)=DAT(J)/10000.0
134
135
                      IF (ITYPE.GT.2) DAT(J)=(DAT(J)/100000.0)+.0254
                      IF ((ITYPE.GT.2).AND.(DAT(J).EQ.O.O)) DAT(J)=999.0
136
                   CONTINUE
137
          80
                   IF ((RUNID.GE.'LXO253').AND.(VARID.EQ.'
                                                                        ')) GO TO 90
138
139
140
          C
               CALL SPROCKET HOLE SUBROUTINE IF 900 OR 100 RECORD
141
                    IF (SUBSTR(VARID, 2,5). EQ. 'X900 ') CALL SPH9X (DAT)
142
                   IF (SUBSTR(VARID,2,5).EQ. 'Y900 ') CALL SPH9Y (DAT)
IF (SUBSTR(VARID,2,5).EQ. 'X100 ') CALL SPH1X (DAT)
143
144
                   IF (SUBSTR(VARID, 2,5).EQ. 'Y100 ') CALL SPH1Y (DAT)
145
146
147
148
          C
                 WRITE TIME OR DISPLACEMENT RECORD
149
                   CALL PUTRCD(IOUT(ISITID), RUNID, VARID, ISITID, IDL, DAT, IER)
150
151
                   IF(IER.NE.O)GO TO 112
                   PRINT 200, RUNID, VARID, ISITID, ITYPE, (DAT(J1), J1=1, 10)
152
153
           90
                 CONTINUE
154
           100
                 CONTINUE
155
          C
                 WRITE DOUBLE END-OF-FILE AT END OF RUN (END OF
156
          C
                 DATA FOR 1 FILM)
157
          C
158
159
                 CALL EOFPUT(IOUT(ISITID), IER)
160
                 IF(IER.NE.O)GO TO 112
161
                 CALL EOFPUT(IOUT(ISITID), IER)
                 IF(IER.NE.O)GO TO 112
162
163
                 CALCULATE SPROCKET HOLE AVERAGES
164
          C
165
          C
166
                 CALL SPHAVG (SPHX, SPHY)
167
                 PRINT 180, SPHX, SPHY
168
          С
169
                 RETURN
          С
170
                 OUTPUT ABORT ROUTINE
171
          C
172
          C
                PRINT 12, IER
FORMAT(1X, 'STATUS ERROR = ',03)
173
           112
174
           12
175
                 STOP 'ABORT'
176
                 FORMAT (I1)
FORMAT (I3)
FORMAT (/' SPROCKET HOLE AVERAGES, X = ',F10.6,'
177
          160
178
          170
                                                                             Y = ', F10.6)
179
          180
```

₱PRT,S .SPHAVG

```
LAMBERT * TPF$(0). CONVT(34)
                    SUBROUTINE CONVT(ITYPE, IST)
     3
             C
                      (1) READ PDS PHOTO DATA FROM TAPE AND (2) CONVERT
             С
                      DIGITIZED PHOTO DATA TO UHNIVAC COMPATIBLE FORMAT
     5
             С
     6
             C
                    ARGUMENT DEFINITIONS:
     8
                      ITYPE-RETURNED PDS RECORD TYPE WHERE
                        1=HEADER RECORD
                        2=TIME RECORD
    10
             C
                        3=X DATA RECORD
    11
             C
    12
             С
                        4=Y DATA RECORD
                      IST-RETURNED ERROR STATUS WORD FROM ADTIO GENERAL
    13
             С
    14
                          PURPOSE I/O ROUTINE
    15
    16
                    DIMENSION I32(300)
                    COMMON/PHTHDR/RUNID, VARID, ISITID, FITIME, JDTDIG, DELTA, IPGVER
    17
                    COMMON/136/IOUT(3),DAT(250),IDL,IUNIT,ITARG
    18
                    CHARACTER+6 RUNID, VARID, JDTDIG, IPGVER
    19
    20
             С
    21
                    DATA FOR EXTENDING THE SIGN BIT.
    22
             С
                    DATA NZ /074000000000/ ,SIGN /00200000000/
    23
             С
    24
    25
                   NW=255
                    CALL ATRD(IUNIT, 132, NW, IST)
    26
    27
                    IF (IST.EQ.1) RETURN
    28
                 ZERO OUT RECEIVING ARRAY.
    29
             С
    30
             С
                    DO 10 I=1,250
    31
                     DAT(I)=O.
    32
    33
             10
                    CONTINUE
    34
    35
                    CONVERT RUN NUMBER FROM NOVA ASCII TO UNIVAC ASCII
    36
             C
                    CALL ASC8T9(132, 1, 17, 6, RUNID)
    37
    38
             C
    39
                    ITYPE=BITS(132(1),1,16)
    40
                    IF (ITYPE.GT.1) GO TO 60
    41
             C
                    EXTRACT HEADER RECORD AND CONVERT TO UNIVAC WORDS
    42
             C
    43
                    BITS(ITIME, 5,8)=BITS(132(2),29,8)
    44
    45
                    BITS(ITIME, 13, 24) = BITS(132(3), 1, 24)
    46
                    FITIME=FLOAT(ITIME)
    47
                    BITS(ISITID, 21, 16) = BITS(I32(4), 5, 16)
                    BITS(IDATE, 21, 12)=BITS(132(3), 25, 12)
    48
                    BITS(IDATE, 33, 4) *BITS(132(4), 1, 4)
    49
                    ENCODE(6, 151, JDTDIG) IDATE
    50
                    BITS(IDELTA, 33,4)=BITS(132(5),1,4)
    51
    52
                    DELTA=FLOAT(IDELTA)
    53
                    BITS(IVER, 25, 12) = BITS(132(5), 5, 12)
                    ENCODE (6, 151, IPGVER) IVER
    55
                   FORMAT(16)
                    IF(IDATE.EQ.O)JDTDIG='
    56
                    IF(IVER.EQ.O)IPGVER='
    57
             С
    58
                    RETURN
```

```
1F (ITYPE.GT.2) GO TO 70
60
          60
61
                  GO TO 80
62
          C
63
          C
                  EXTRACT TARGET NUMBERS FROM INPUT BUFFER
64
          C
                  BITS(ITARG,5,8)=BITS(I32(2),29,8)
BITS(ITARG,13,24)=BITS(I32(3),1,24)
BITS(ISITID,5,12)=BITS(I32(3),25,12)
65
            70
66
67
68
                  BITS(ISITID, 17, 20)=BITS(I32(4), 1, 20)
69
70
                  EXTRACT DATA VALUES FOR DATA RECORD (OR TIME RECORD)
          C
71
72
73
          C
                  IW=4
                  IB=21
74
                  GO TO 90
75
          80
                  IW=5
76
                  IB=17
77
                  DO 110 I=1,250
           90
78
79
                     ITEMP=0
                     IS*5
80
                     IL=37-IB
                     IF (IL.GT.32) IL=32
BITS(ITEMP,IS,IL)=BITS(I32(IW),IB,IL)
IF (IL.EQ.32) GO TO 100
81
82
83
84
                     IW=IW+1
85
                     IB=1
                     IS=4+IL+1
86
87
                     IL=37-IS
88
                     BITS(ITEMP, IS, IL)=BITS(I32(IW), IB, IL)
89
           100
                     IB=IB+IL
90
                     IF (IB.GT.36) IW=IW+1
91
          C
                  EXTEND THE SIGN BIT FOR NEGATIVE NUMBERS AND CHANGE
92
93
          C
                  2'S COMPLEMENT TO 1'S COMPLEMENT
94
          C
95
                     IF (AND(SIGN, ITEMP).NE.O) ITEMP=OR(ITEMP, NZ)-1
96
97
                    IF (IB.GT.36) IB=1
DAT(I)=FLOAT(ITEMP)
98
           110
                  CONTINUE
99
                  IDL=250
100
           C
101
                  RETURN
102
           C
                  END
103
```

ePRT.S .CNVT1

```
LAMBERT * TPF$(0). SPHAVG(11)
                    SUBROUTINE SPHAVG (SPHX, SPHY)
                    DIMENSION X(1), X1(250), X9(250), Y1(250), Y9(250)
                  THIS SUBROUTINE CALCULATES SPROCKET HOLE AVERAGES FOR EACH CAMERA
             C
                  FROM 5 CONTINUOUS FRAMES IN THE PHOTO DATA USING THE CHAIR OR SLED
                  DISPLACEMENTS AND THE SPROCKET HOLE DISPLACEMENT.
             C
                  (THESE ARE THE 900 AND 100 RECORDS)
             C
     8
             C
                    ARGUMENT DEFINITIONS:
     9
                      SPHX-RETURNED SPROCKET HOLE AVG. FOR X VALUES SPHY-RETURNED SPROCKET HOLE AVG. FOR Y VALUES
    10
    11
             C
    12
             C
    13
                    GO TO 50
    14
             C
    15
             C
                  SAVE X AND Y DISPLACEMENTS
    16
    17
                    ENTRY SPH9X (X)
    18
    19
                    DO 10 J=1,250
                    X9(J)=X(J)
    20
             10
                    ICX=ICX+1
    21
                    RETURN
    22
    23
             ¢
    24
                    ENTRY SPH9Y (X)
    25
    26
                    DO 20 J=1,250
    27
             20
                    Y9(J)=X(J)
                    ICY=ICY+1
    28
                    RETURN
    29
    30
    31
             C
                    ENTRY SPHIX (X)
    32
                    DO 30 J=1,250
    33
                    X1(J)=X(J)
    34
             30
                    ICX=ICX+1
    35
                    RETURN
    36
    37
    38
             C
                    ENTRY SPHIY (X)
    39
                    DO 40 J=1,250
    41
             40
                    Y1(U)=X(U)
                    ICY=ICY+1
    42
                    RETURN
    43
    44
             C
    45
    46
             50
                    CONTINUE
    47
             C
                  CALCULATE DIFFERENCES IN SPROCKET HOLE AND SLED OR CHAIR
    48
             C
                  TARGET DISPLACEMENTS FOR 5 CONSECUTIVE FRAMES.
    49
                  AND SUM THESE DIFFERENCES (X VALUES)
    50
    51
    52
                    IBG-0
    53
                    IF (ICX.LT.2) GO TO 80
             C
    55
    56
                    DO 70 J=1,250
                      IF (X1(J).GT.900..OR.X9(J).GT.900.) GO TO 60
SUMX=SUMX+(ABS(X1(J))-ABS(X9(J)))
    57
    58
                      IF (IBG.EQ.O) IBG=J
```

```
IF ((J-IBG).GE.4) GO TO 90
GO TO 70
60
61
                  SUMX=0
         60
62
                  IBG=0
63
               CONTINUE
         70
64
65
         ¢
               IF (IBG.GE.250) IBG=0
66
67
68
         80
               SPHX=0
               GO TO 100
69
               CONTINUE
70
         90
71
         C
72
             CALCULATE SPROCKET HOLE AVERAGES AND CONVERT TO PDS UNITS
73
         C
74
         C
             FROM CENTIMETERS (X VALUE)
75
         C
               SPHX=(SUMX/5.)+(1000./(1.884765+.0254))
76
         C
77
               1F (ICY.LT.2) GO TO 120
         100
78
79
80
         C
             CALCULATE DIFFERENCES IN SPROCKET HOLE AND SLED OR CHAIR
         C
81
             DISPLACEMENTS FOR 5 CONSECUTIVE FRAMES AND SUM THESE VALUES.
82
         C
             USE THE SAME 5 FRAMES USED IN CALCULATING THE X VALUES ABOVE
         c
83
               (Y VALUE)
84
85.
                IST=4
86
                IF (18G.NE.O) IST=18G
IND=250
87
88
                IF (IBG.NE.O) IND=IST+4
89
         C
90
                SUMY=0
91
                DO 110 J=IST, IND
92
                  IF (Y1(J).GT.900..QR.Y9(J).GT.900.) GD TD 120
SUMY=SUMY+(ABS(Y1(J))-ABS(Y9(J)))
93
94
95
         110
                CONTINUE
96
         C
                GO TO 130
97
98
                SPHY=0
         120
99
                GO TO 140
100
101
         C
         130
                CONTINUE
102
103
         C
         C
104
              CALCULATE SPROCKET HOLE AVERAGE AND CONVERT TO PDS UNITS
         C
105
              FROM CENTIMETERS (Y VALUE)
106
         ¢
107
                SPHY=(SUMY/5.)*(1000./(1.884765*.0254))
108
109
110
          140
                ICX=0
                ICY=0
111
         C
112
                RETURN
113
114
         C
115
                END
```

PPRT,S .ASC8T9

```
LAMBERT * TPF$(0). ASC8T9(17)
                   SUBROUTINE ASCRT9(INPUTA, IWD, IBIT, NCHAR, CSTRNG)
                   FUNCTION:
                     CONVERT STRING OF 8-BIT ASCII CHARACTERS TO
            C
                     UNIVAC COMPATIBLE 9-BIT ASCII CHARACTER STRING
                   ARGUMENT DEFINITIONS:
                     INPUTA-INTEGER INPUT ARRAY OF 8-BIT CHARACTER DATA
                     IWD-STARTING WORD IN INPUTA OF 8-BIT ASCII CHARACTER STRING
                     IBIT-BEGINNING BIT IN IWD OF INPUT 8-BIT ASCII CHARACTER STRING
    10
            C
                     NCHAR-NUMBER ASCII CHARACTERS TO BE CONVERTED TO UNIVAC FORMAT
                     CSTRNG-RETURNED DUTPUT STRING OF UNIVAC 9-BIT ASCII CHARACTERS
                   PROGRAMMER: J LAMBERT 20 MAY 1983
            С
    15
            C
                   INTEGER INPUTA(1)
    16
            С
    17
    18
                   LENGTH OF CHARACTER STRING MUST BE INITIALIZED IN CALLING PROGRAM
    19
    20
                   CHARACTER+(+) CSTRNG, ITEMP+1
                   DATA IL1, IL2/2*0/
                   IB=IBIT
    22
                   IW=IWD
    23
    24
                   1ST BIT OF UNIVAC ASCII CHARACTER ALWAYS O(ZERO)
    25
    26
            C
    27
                   BITS(ITEMP, 1, 1)=0
    28
            C
                   CONVERT EACH 8-BIT CHARACTER TO 9-BITS
    29
    30
    31
                   DO 20, I = 1, NCHAR
                   IF((IB+7).LT.36)THEN
    32
                     BITS(ITEMP, 2,8)=BITS(INPUTA(IW), IB,8)
    34
                   ELSE
                     IL1=37-18
    35
                     IL2=8-IL1
    36
                     BITS(ITEMP.2.IL1)=BITS(INPUTA(IW),IB,IL1)
    37
    38
                     BITS(ITEMP, 2+IL1, IL2)=BITS(INPUTA(IW+1), 1, IL2)
    39
    40
                   SUBSTR(CSTRNG, I, 1) = SUBSTR(ITEMP, 1, 1)
                   IB=1B+8
    42
                   IF(IB.GT.36)THEN
                     IW=IW+1
    43
    44
                     1B=1B-36
    45
                   END IF
                   CONTINUE
    46
             20
    47
                   RETURN
                   END
    48
```

ePRT,S.XQTPLT

```
. CONTROL STATEMENT IMMEDIATELY AFTER PXQT STATEMENT
                          POS 5 - NO. INPUT UNITS (1, 2 OR 3)
                          POS 10 - TIME RECORD ANALYSIS PLOT OPTION
                          O = OUTPUT TO LINE PRINTER

1 = OUTPUT TO COMPRESSED PLOT FILE

NOT O OR 1 = NO TIME RECORD ANALYSIS

POS 15 - XY CONTOUR PLOT OPTION
     10
                                      O = PLOT XY CONTOUR FOR ALL MOUNTS/SITES/RUNS
                          NOT O = NO XY CONTOUR PLOTS
POS 20 - FRAME PLOT OPTION
     12
                                     O = FRAME PLOTS FOR ALL MOUNTS/SITES/RUNS
     13
                          NOT O = NO FRAME PLOTS
POS 25 - FORMAT OPTION FOR FRAME PLOTS
O = COL'S 2 & 4 UP -- COL'S 1, 3 & 5 DOWN
     14
     15
                                      NOT O = ALL COL'S DOWN
     17
                          POS 35 - LOWEST RUN NO. TO BE PROCESSED POS 45 - HIGHEST RUN NO. TO BE PROCESSED
     18
     19
               PXQT SCC$+INTLIB.FR80POP
     20
               MO40
DATASYSTEMS
     21
     22
     23
               5-4890
     24
               FRAME PLOTS
               FRAME PLOTS
     25
                1 HARDCOPY 1 MICROFICHE
     26
     27
     28
     29
               DRAW= 1-END$
     30
               POELETE, C COMPRESS.
     31
               PFREE COMPRESS.
     32
               PASG,CP COMPRESS.,F///1000
               PCOPY 17., COMPRESS.
PFREE COMPRESS.
     33
     34
               . EXITED FROM .XQTPLT
```

PRT,S .PLOT

```
LAMBERT+TPF$(0).PLOT(9)
             C
                    FUNCTION:
                       THIS ASCII FORTRAN DRIVER PROGRAM CONTROLS THE GENERATION
     3
             C
                       OF MOUNT PLOTS FOR A RANGE OF RUNS SPECIFIED BY THE USER. TWENTY-FIVE FRAMES (DATA PTS.) ARE PLOTTED ON EACH OF 10
             C
     5
             C
                      PAGES FOR A GIVEN MOUNT AND SITE ID. THE DISSPLA PLOT
     6
             C
     7
             C
                      PACKAGE IS USED FOR ALL PLOTTING.
     9
                    COMMON/LOAD/XMIN,XMAX, IPGE, YMIN, YMAX, TITLE, IST, ILT, IX, XOR,
    10
                    *YOR, VARX, VARY, IERR, STEP, DC(250)
                    COMMON/PHTHDR/RUNID, VARID, ISITID, F1TIME, JDTDIG, DELTA, IPGVER
    11
                    CHARACTER+6 RUNID, VARID, JDTDIG, IPGVER, TITLE(9), VARX(12), VARY(12)
    12
    13
                    CHARACTER+6 FRUN, LRUN, RUNS(200), FIRST, LAST, ENC+4, SITE+1
    14
                    DATA MAX/280/
    15
                    READ USER OPTIONS IN CARD IMAGE
    16
             C
    17
                    READ(5,6) IFILE, ITIM, IXY, IMTPLT, IWAY, FRUN, LRUN FORMAT(515,9X,2(A6,4X))
    18
              6
    19
             C
    20
    21
             C
                     WHERE:
             C
                       IFILE: NO. OF INPUT FILES
    22
    23
             C
                       ITIM: TIME RECORD ANALYSIS PLOT OPTION
    24
             C
                              O-OUTPUT TO LINE PRINTER
                              1=OUTPUT TO COMPRESSED PLOT FILE
    25
             C
                              NOT O AND NOT 1 = NO TIME RECORD ANALYSIS
             С
    26
                       IXY: XY CONTOUR PLOT OPTION
             C
    27
    28
             С
                             O=PLOT XY CONTOUR FOR EACH MOUNT/SITE/RUN
    29
             C
                             NOT O . NO XY CONTOURS
             C
                       IMTPLT: MOUNT PLOT OPTION
    30
             C
                                O=FRAME PLOTS REQUIRED FOR ALL DATA
    31
             C
    32
                                NOT O = NO FRAME PLOTS
                       IWAY: PLOT DIRECTION OPTION
    33
                               OFBOTTOM TO TOP COLUMNS 2 AND 4 NOT O = TOP TO BOTTOM ALL COLUMNS
    34
             C
    35
             C
             C
                       FRUN: LOW ORDER VALUE OF RUN NO. RANGE
    36
             C
                       LRUN: HIGH ORDER VALUE OF RUN NO. RANGE
    37
             C
    38
             C
    39
                    SET COMPRESSOR FOR PLOTTING
             С
    40
    41
    42
                    CALL COMPRS
    43
                    CALL SETDEV(6,0)
                    CALL GRACE(O.)
    44
                    CALL PAGE(14./1.02, 4/1.02)
    45
                    CALL NOBRDR
    46
    47
                    CALL ERASE
    48
                    ONE UNIT = 10.5/1.02 INCHES
    49
             C
    50
             C
    51
                    CALL UNITS(10.5/1.02)
    52
             C
                    COMPUTE RUN RANGE
             C
    53
    54
                    FIRST=SUBSTR(FRUN.3.4)
    55
    56
                    LAST=SUBSTR(LRUN, 3, 4)
    57
                    DECODE(4,FIRST)IFIRST
    58
                    DECODE(4, LAST) ILAST
                    FORMAT(14)
    59
```

```
COMPUTE INPUT UNIT ASSIGNMENTS
61
62
63
                ILIM=IFILE+8
                IU=9
64
                CONTINUE
65
                PRINT 3.IU, ILIM, ITIM, IXY, IMTPLT, IWAY, FRUN, LRUN
66
                FORMAT(6110,2(4X,A6))
          3
67
68
                GENERATE TITLE FOR EACH PAGE
69
70
71
72
                TITLE(2)='
                              CAM'
                TITLE(5)='
73
74
                TITLE(6)='
                              PAG'
                TITLE(7)='E
                TITLE(9)='
75
                TITLE(3)='
76
77
                TITLE(4)='
78
79
                TITLE(8)='
                PLOT DATA FOR EACH RUN
80
81
         C
                IRN=IABS(ILAST-IFIRST)+1
82
83
                INC=IFIRST
                DO 500.I=1,IRN
84
85
                CREATE RUN ARRAY TO BE SEARCHED
86
87
         C
                SUBSTR(RUNS(I), 1, 2) * 'LX'
88
                ENCODE (17, ENC) INC
89
                FORMAT(14)
           17
90
                SUBSTR(RUNS(I),3,4)*ENC
91
92
                INC=INC+1
93
                ATTEMPT TO SET SECTOR TO HEADER FOR RUN
94
95
                CALL SETSCT(IU.RUNS(I), 'PHDATA', 1, ISITE, NREC, IER)
96
                IF(IER.NE.O)GO TO 500
CALL GETRCD(IU, MAX, RUNID, VARID, ISITE, IDL.DC, IER)
97
98
                IF(IER.NE.O)THEN
99
100
                  PRINT 13, IER
                   FORMAT(1X, 'STATUS=',03)
101
           13
                   STOP 'HEADER ERROR'
102
                END IF
103
                IF(VARID.NE. 'PHDATA')STOP 'HEADER ERREN'
104
105
          C
                GENERATE TIME RECORD ANALYSIS AND WRITE ON FICHE
106
107
                ENCODE (10, SITE) ISITID
108
109
           10
                FORMAT(I1)
                 SUBSTR(TITLE(3),3,1)=SITE
110
                 TITLE(1)=RUNID
111
                IF(ITIM.EQ.O .OR. ITIM.EQ.1)THEN CALL TIMER(IU,ITIM)
112
113
                   IF(IERR.NE.O)GD TD 500
114
115
                 END IF
116
                PLOT DATA FOR EACH MOUNT FOR THIS RUN
117
118
                 DO 400.L=1.4
```

```
120
         C
                LOAD DATA
121
122
123
                CALL LDATA(IU,L)
124
                IF(IX.NE.O)THEN
125
                  IST=1
126
                  IFM=1
127
                ELSE
                  GO TO 400
128
129
                END IF
130
131
                GENERATE TITLE INFORMATION FOR THIS MOUNT
132
133
                IF(L.EQ.1)THEN
                  TITLE(5)='NECK
134
135
                ELSE IF(L.EQ.2)THEN
136
                  TITLE(5)='MOUTH '
                ELSE IF(L.EQ.3)THEN
137
138
                  TITLE(5)='HEAD
                ELSE IF(L.EQ.4)THEN
TITLE(5)='PELVIS'
139
140
141
                END IF
142
143
                LOOP FOR EACH PAGE OF PLOTS (FRAMES)
144
                IF(IMTPLT.NE.O)GO TO 300
         C
145
146
                DO 55, IPGE=1, 10
          С
147
                DEFINE PHYSICAL ORIGIN FOR FIRST FRAME ON PAGE
148
          С
149
150
                XOR=.16
151
                YOR = . 81
152
         С
                DETERMINE MAX AND MIN VALUES FOR THIS PAGE OF PLOTS
153
          C
154
         С
155
                ILT=IST+24
156
                CALL MIXY
157
          C
                PRINT TITLE AT TOP OF PAGE
158
          C
         С
159
                CALL PLOT1
160
161
          С
162
                LOOP TO CONTROL COLUMN OF PLOTS
163
         С
                DO 50,K=1,5
164
165
                IC=MOD(K.2)
166
          C
                PLOT DATA 5 FRAMES FOR EACH OF 5 COLUMNS
          С
167
168
          С
169
                DO 25,J=1,5
170
                CALL PLOT2(IFM)
171
                CHECK FOR DIRECTION OF PLOTS (UP OR DOWN)
172
          C
173
         С
174
                IF (IWAY.NE.O)THEN
175
          С
176
                PLOT TOP TO BOTTOM ALL COLUMNS
177
                  IF(J.NE.5)YOR=YOR-.2
178
179
                ELSE
```

```
180
181
          C
                PLOT BOTTOM TO TOP COLUMNS 2 AND 4
182
183
                  IF(J.NE.5)THEN
184
                    IF(IC.NE.O)THEN
185
                      YOR=YOR-.2
186
                     ELSE
187
                       YOR=YOR+. 2
188
                    END IF
189
                  END IF
190
                END IF
191
                CHECK FOR LAST DATA POINT
192
193
194
                IF(IST.LT.250)THEN
195
                  IST=IST+1
196
                  IFM=IFM+1
197
                ELSE
198
                  CALL ENDPL(O)
199
                  GO TO 55
200
                END IF
201
          25
                CONTINUE
         c
C
202
203
                MODIFY PHYSICAL ORIGIN FOR NEXT COLUMN
         C
204
                IF(IWAY.NE.O)THEN
205
                  XOR=XOR+.2
206
                  YOR=.81
207
208
                ELSE
209
                  XOR=XOR+.2
210
                END IF
211
          50
                CONTINUE
212
                CALL ENDPL(0)
213
          55
                CONTINUE
214
215
         Č
                PLOT X VS Y ALL FRAMES
216
217
          300
                IF(IXY.EQ.O)CALL XYPLOT
218
          400
                CONTINUE
219
          500
                CONTINUE
220
                IF(IU.LT.ILIM)THEN
221
                  10=10+1
222
                  GO TO 1
223
                END IF
224
                CALL DONEPL
225
                STOP
226
                END
```

PPRT,S .PLOTD

```
LAMBERT + TPF$(0). TIMER(33)
                    SUBROUTINE TIMER(IU.ITIM)
     3
             C
                    FUNCTION:
                      GENERATE AND PLOT TIME RECORD ANALYSIS FOR A GIVEN RUN
             C
                    ARGUMENT DEFINITIONS:
                      IU: LOGICAL UNIT NO. OF INPUT FILE
     7
             C
                      ITIM: OPTION TO PLOT TIME RECORD ANALYSIS WHERE
             C
     8
                             O = OUTPUT TO LINE PRINTER
1 = OUTPUT TO COMPRESSED PLOT FILE
     9
             C
     10
             C
     12
                    COMMON/LOAD/XMIN, XMAX, IPGE, YMIN, YMAX, TITLE, IST, ILT, IX, XOR,
    13
                   *YOR, VARX, VARY, IERR, STEP, DC(250)
                    COMMON/PHTHOR/RUNID, VARID, ISITID, FITIME, JOTDIG, DELTA, IPGVER
    14
                    CHARACTER+6 RUNID, VARID, JDTDIG, IPGVER, TITLE(9), VARX(12), VARY(12)
    15
                    CHARACTER+6 SYM+1(250), LTINT, LDD+9(250), LETIME+9(250)
    16
     17
                    CHARACTER+8 LINDEX+3(250), LPDST, LEXPT, LFRNO+7
                    CHARACTER + 128 LINE, LHEAD(2)
     18
                    DIMENSION ETIME(250), DD(250)
     19
                    DATA LPDST, LEXPT, LFRNO/'D TIME', 'P TIME', 'FRAME '/
    20
                    IERR=1
    21
                    CALL HEIGHT (.018)
    22
    23
                    SET SECTOR FOR TIME RECORD
    24
    25
    26
                    VARID=' TS
                    SUBSTR(VARID, 1, 1) = SUBSTR(TITLE(3), 3, 1)
    27
                    CALL SETSCT(IU, RUNID, VARID, 1, ISIT, NREC, IER)
    28
                    IF(IER.NE.O)THEN
    29
                      PRINT 13, IER
    30
    31
               13
                      FORMAT(1X, 'STATUS=',03)
    32
                      GO TO 100
    33
                    END IF
    34
                    READ TIME RECORD
    35
    36
    37
                    MAX=280
                    CALL GETRCD(IU, MAX, RUNID, VARID, ISIT, IDL, DD, IER)
    38
    39
                    IF(IER.NE.O)THEN
    40
                      IF(IER.EQ. 1)THEN
                         GO TO 100
    41
    42
                      FI SF
                         PRINT 13, LER
    43
                         STOP 'TIME ERROR'
    44
    45
                      END IF
    46
    47
                    CHECK FOR TIME RECORD IDENTIFICATION
    48
    49
                    IF(SUBSTR(VARID, 2, 2).NE. 'TS')THEN
    50
    51
                      PRINT 1, RUNID
    52
                      FORMAT(1X, 'COULD NOT FIND TIME RECORD FOR RUN ', A6)
                      STOP 'TIME ERROR'
    53
    54
                    ELSE
                      IERR=0
    55
    56
                    END IF
    57
                    COMPUTE TIME INTERVAL BETWEEN FRAMES
    58
```

```
DO 15,K=250,1,-1
ώO
                  IF(DD(K).LE.O)THEN
61
                    CONTINUE
62
63
                  ELSE
                     DO 21,J=1,250
64
                     IF(DD(J).LE.O)THEN
65
                       CONTINUE
66
67
                       IF(DD(K).LT.DD(J))DD(K)=DD(K)+10.
68
                        TINT=(DD(K)-DD(J))/(K-J)
69
                       GO TO 32
70
                     FND IF
71
                     CONTINUE
72
            21
73
                     GO TO 100
                  END IF
74
            15
                  CONTINUE
75
                  PRINT 16, RUNID
76
                  FORMAT(1X, 'TIME RECORD FOR RUN '.A6, 'WAS ALL ZEROES')
            16
77
                  GO TO 100
78
                  ETIME(1)=DD(1)
79
            32
80
                   SYM(1)='
81
                   COMPUTE EXPECTED TIMES
82
83
                   DO 35, JJ=2,250
84
                   ETIME(JJ)=ETIME(JJ-1)+TINT
85
                   SYM(JJ)='
86
                   IF(DD(JJ) .LT. .000001)THEN
87
                     CONTINUE
88
89
                   ELSE
                     DIF=ETIME(JJ)-DD(JJ)
90
                     IF(ABS(DIF) .GT. .001)SYM(JJ)='+'
 91
 92
                   END IF
            35
                   CONTINUE
 93
 94
           C
                   WRITE HEADER INFO FOR TIME RECORD ANALYSIS
 95
 96
                   ENCODE(11, LTINT)TINT
 97
                   FORMAT(F6.5)
             11
 98
                   IF(ITIM.EQ. 1)THEN
 99
                   CALL TABLET ('CENTER', 'LONG')
ELSE IF (ITIM.EQ.O) THEN
100
101
102
                      PRINT 56
                      FORMAT('1')
103
                   END IF
104
                   SUBSTR(LHEAD(1),1,4)='RUN '
105
                   SUBSTR(LHEAD(1).5,6)=RUNID
106
                   SUBSTR(LHEAD(1).11.11)=' '
SUBSTR(LHEAD(1).11.11)=' '
SUBSTR(LHEAD(1).22.7)='CAMERA '
SUBSTR(LHEAD(1).29.3)=SUBSTR(TITLE(3).1.3)
SUBSTR(LHEAD(1).32.11)=' '
SUBSTR(LHEAD(1).32.11)=' '
107
108
109
110
                   SUBSTR(LHEAD(1),43,15)='PREDICTED RATE 'SUBSTR(LHEAD(1),58,6)=LTINT
111
112
                    IF(ITIM.EQ. 1)THEN
113
                      SUBSTR(LHEAD(1),64.1)='$'
114
                   CALL CTLINE(LHEAD(1))
CALL CTLINE(' $')
ELSE IF(ITIM.EQ.O)THEN
115
116
117
                      PRINT 14, LHEAD(1)
118
                      FORMAT(21X, A63/)
119
```

```
120
                 END IF
          C
121
                 WRITE HEADER INFO. FOR INDIVIDUAL COLUMNS
122
123
                 CALL HEIGHT (.01)
124
125
                 DO 23, IREP=1,5
126
                 SUBSTR(LHEAD(2),(((IREP-1)+23)+1),7)=LFRNO
127
                 SUBSTR(LHEAD(2), (((IREP-1)+23)+8),8)=LPDST
128
                 SUBSTR(LHEAD(2),(((IREP-1)+23)+16),8)=LEXPT
           23
                 CONTINUE
129
                 IF(ITIM.EQ.1)THEN
130
                    SUBSTR(LHEAD(2), 116, 1)='$'
131
132
                    CALL CTLINE(LHEAD(2))
133
                    CALL CTLINE(' $')
                 ELSE IF(ITIM.EQ.O)THEN
134
135
                    PRINT 17, LHEAD(2)
           17
                    FORMAT(1X, A115/)
136
                 END IF
137
138
          С
                 PRINT TIME RECORD ANALYSIS
139
140
          С
141
                 DO 60, KK=1,50
                 DO 71, IENC=1,5
INDEX=(((IENC-1)*50)+KK)
142
143
                 ENCODE(8, LINDEX(INDEX)) INDEX
144
                 ENCODE(9,LDD(INDEX)) DD(INDEX)
145
146
                 ENCODE(9,LETIME(INDEX)) ETIME(INDEX)
147
                 FORMAT(F9.5)
148
                 FORMAT(13)
                 SUBSTR(LINE,(((IENC-1)*23)+1),1)=' '
SUBSTR(LINE,(((IENC-1)*23)+2),3)=LINDEX(INDEX)
149
150
                 SUBSTR(LINE.(((1ENC-1)*23)+5),9)=LDD(INDEX)
SUBSTR(LINE.(((1ENC-1)*23)+14),9)=LETIME(INDEX)
151
152
                 SUBSTR(LINE, (((IENC-1)+23)+23), 1)=SYM(INDEX)
153
154
           71
                 CONTINUE
155
                 IF(ITIM.EQ.1)THEN
                    SUBSTR(LINE, 116, 1)='$'
156
157
                 CALL CTLINE(LINE)
                 ELSE IF(ITIM.EQ.O)THEN
158
159
                   PRINT 18, LINE
160
            18
                    FORMAT(1X,A115)
161
                 END IF
                 CONTINUE
           60
162
                 IF(ITIM.EQ.O)THEN
PRINT 78
163
164
                   FORMAT('1')
165
           78
166
                 END IF
167
            100
                 CONTINUE
168
                 CALL RESET('HEIGHT')
169
                 IF(ITIM.EQ. 1)THEN
                   CALL ENDTAB(O)
CALL ENDPL(O)
170
171
                 END IF
172
173
                 RETURN
                 END
```

PRT,S .XQTSGN

```
LAMBERT+TPF$(0).LDATA(13)
                    SUBROUTINE LDATA(IU, MNT)
     3
                      LOAD PHOTO DISPLACEMENT DATA INTO COMMON FOR
             C
                      ACCESS BY PLOT ROUTINES
             С
             С
                    ARGUMENT DEFINTIONS:
             C
                      IU: LOGICAL UNIT NO. OF INPUT DATA FILE
                      MNT: MOUNT INDEX
     10
                    COMMON/LOAD/XMIN,XMAX,IPGE,YMIN,YMAX,TITLE,IST,ILT,IX,XOR,
                   *YOR, VARX, VARY, IERR, STEP, DC(250), DX(250, 12), DY(250, 12)
     12
                    COMMON/PHTHOR/RUNID, VARID, ISITID, FITIME, JOTDIG, DELTA, IPGVER
                    DIMENSION DD(250)
                    CHARACTER+6 RUNID, VARID, JDTDIG, IPGVER, TITLE(9), VARX(12), VARY(12)
     15
                    CHARACTER*2 ONE/'01'/, TGCHK/'00'/, MTCHK*1/'0'/
CHARACTER*3 TARGET, DLDRUN*6
     16
     17
                    DATA MAX/280/
     18
                    1X=0
     19
                    IY=O
     20
     21
                    INITIALIZE CHAIR DATA FLAG
     22
     23
              C
                     IF (OLDRUN. NE. RUNID) ICHAIR=0
     24
     25
                     SET SECTOR TO TIME RECORD
     26
     27
     28
                     SUBSTR(VARID, 1, 1)=SUBSTR(TITLE(3),3,1)
     29
                     CALL SETSCT(IU, RUNID, VARID, 1, ISIT, NREC, IER)
     30
                     IF(IER.NE.O)THEN
     31
                       PRINT 13, IER
     32
                       FORMAT(1X, 'STATUS=',03)
               13
     33
                       STOP 'LDATA'
     34
                     END IF
     35
     36
                     GET NEXT DATA RECORD
     37
     38
                     CALL GETRCD(IU, MAX.RUNID, VARID, ISIT, IDL, DD, IER)
     39
                     IF(IER.NE.O)THEN
     40
                       IF(IER.EQ.1)THEN
     41
                          GO TO 56
     42
                       ELSE
     43
                          PRINT 13, IER
     44
                          GO TO 72
     45
                       END IF
     46
                     END IF
     47
     48
                     CHECK FOR CHAIR DATA AND STORE
     49
     50
                     IF(ICHAIR.EQ. 1)THEN
     51
                        CONTINUE
     52
     53
                        TARGET=SUBSTR(VARID, 3, 3)
     54
                        IF (TARGET. EQ. '100') THEN
     55
                          DD 16, J=1,250
DC(J)=DD(J)
     56
                16
     57
                          PRINT 606, VARID, RUNID
                          FORMAT(' CHAIR DATA, VARIABLE', AG, ' LOADED FOR RUN ', AG)
      58
                606
      59
```

```
ICHAIR=1
60
                      GO TO 8
61
62
                    END IF
63
                 END IF
64
          С
                 PROCESS DATA RECORD
65
66
                 TGCHK=SUBSTR(VARID,4.2)
67
                 IF (TGCHK.LT.ONE) THEN
68
69
                    CONTINUE
70
                 ELSE
                    MTCHK=SUBSTR(VARID, 3, 1)
71
72
                    DECODE (10, MTCHK) IMTCHK
73
74
           10
                    FORMAT(I1)
                 CHECK FOR CURRENT MOUNT
75
          С
76
          С
                    IF (IMTCHK.NE.MNT)THEN
77
78
                      CONTINUE
79
                    ELSE
80
                      IF(SUBSTR(VARID, 2, 1). EQ. 'X')THEN
                         IX=IX+1
81
                         DO 22, J=1,250
82
                         DX(J,IX)=DD(J)
83
           22
                         VARX(IX)=VARID
84
                       ELSE IF(SUBSTR(VARID, 2, 1). EQ. 'Y')THEN
85
                         IY=IY+1
86
                         DO 32, J=1,250
DY(J, IY)=DD(J)
87
            32
88
                         VARY(IY)=VARID
89
                       END IF
90
91
                    END IF
92
                  END IF
93
          C
                  READ ANOTHER DATA RECORD
          C
94
95
          C
96
                  GO TO 8
                  CONTINUE
 97
            56
                  IF(IY.EQ.O)THEN
 98
99
                    IX=0
100
                  ELSE IF(IX.EQ.O)THEN
                    CONTINUE
101
102
                  ELSE
                    PRINT 58, IX, IY, MNT, RUNID
103
                    FORMAT(1X,12,2X,'X DISP AND ',12,2X,'Y DISP',
LOADED FOR MOUNT ',12,5X,'RUN ',A6)
PRINT 66,(VARX(I),I=1,IX),(VARY(I),I=1,IY)
FORMAT(12(2X,A6))
104
            58
105
106
107
            66
                  END IF
108
           С
109
                  IF NO CHAIR DATA STORE 999'S IN ARRAY
110
          C
111
                  IF(ICHAIR.EQ.O)THEN
112
113
                    DO 71,J=1,250
114
            71
                    DC(J)=999.
115
                  END IF
                  CONTINUE
            72
116
                  OLDRUN=RUNID
117
                  RETURN
118
119
                  END
```

```
LAMBERT = TPF$(0).MIXY(30)
                   SUBROUTINE MIXY
                   FUNCTION:
             C
             C
                     DETERMINE MINIMUM AND MAXIMUM X AND Y VALUES FOR
             C
                      A PAGE OF MOUNT PLOTS
     6
             C
     7
                   COMMON/LOAD/XMIN.XMAX, IPGE, YMIN, YMAX, TITLE, IST, 1LT, IX, XOR,
     8
                  *YOR. VARX, VARY, IERR, STEP, DC(250), DX(250, 12), DY(250, 12)
                   COMMON/PHTHDR/RUNID, VARID, ISITID, FITIME, JDTDIG, DELTA, IPGVER
     9
    10
                   CHARACTER+6 RUNID, VARID, JDTDIG, IPGVER, TITLE(9), VARX(12), VARY(12)
                   XMIN, YMIN=999.
                   XMAX, YMAX=O.
    12
    13
             C
                   INITIALIZE COUNTERS
    14
             C
    15
             С
    16
                   ISTNEW=IST
    17
                   ILTNEW=ILT
    18
                   CHECK IF ALL PTS TO BE PLOTTED
    19
    20
                   IF(IERR.EQ.999)THEN
    21
    22
                      ISTNEW=1
    23
                      ILTNEW=250
                   END IF
    24
    25
                   EXAMINE DATA PTS. FOR ALL TARGETS
    26
    27
                   DO 20, JK = ISTNEW, ILTNEW
    28
    29
                   DO 20, JL=1, IX
    30
                   DXX=ABS(DX(JK,JL))
                   DYY=ABS(DY(JK,JL))
                   IF(DXX.LE.990. .AND. DYY.LE.990.)THEN
    32
                      XMIN=AMIN1(DXX,XMIN)
    33
                      YMIN=AMIN1(DYY, YMIN)
    34
    35
                      XMAX=AMAX1(DXX,XMAX)
                      YMAX=AMAX1(DYY,YMAX)
    36
    37
                   END IF
                   CONTINUE
              20
    38
    39
             С
                   EQUATE X AND Y AXES
    40
    41
    42
                   XDIF=XMAX-XMIN
                    YDIF=YMAX-YMIN
    43
    44
                   IF(XDIF.LE.YDIF)THEN
                      XMAX=XMAX+(YDIF-XDIF)/2.
    45
                      XMIN=XMIN-(YDIF-XDIF)/2.
    46
    47
                   ELSE
    48
                      YMAX=YMAX+(XDIF-YDIF)/2.
    49
                      YMIN=YMIN-(XDIF-YDIF)/2.
    50
    51
                   COMPUTE STEP INTERVAL FOR PLOT
    52
    53
    54
                   IF(IERR.NE.999)THEN
    55
                      STEP=(XMAX-XMIN)/.18
    56
                   ELSE
                      STEP=(XMAX-XMIN)/.8
    57
                   END IF
    58
```

RETURN

60 END

PRT,S .LDATA

```
LAMBERT+TPF$(0).PLOTD(46)
                   SUBROUTINE PLOTD
     2
                   FUNCTION:
                     CONTROLS (1) GENERATION OF TITLE FOR EACH PAGE OF MOUNT
             C
                      PLOTS AND (2) GENERATION OF MOUNT PLOTS WITH DISSPLA
             C
                      PLOT PACKAGE
             C
     7
             C
                   COMMON/LOAD/XMIN,XMAX,IPGE,YMIN,YMAX,TITLE,IST,ILT,IX,XOR,
     9
                  *YOR, VARX, VARY, IERR, STEP, DC(250), DX(250, 12), DY(250, 12)
    10
                   COMMON/PHTHDR/RUNID, VARID, ISITID, FITIME, JDTDIG, DELTA, IPGVER
                   CHARACTER+6 RUNID, VARID, JDTDIG, IPGVER, TITLE(9), VARX(12), VARY(12)
    12
                   * . PAG+3
                   CHARACTER+2 TGT(12),TADD.TDROP,TNEW(12).TOLD(12),SSCL+8,SC+7
CHARACTER+4 FRAM/' '/,TEMP+2/' '/
    13
    14
    15
                   DIMENSION DAT(12,2),NPT(12)
    16
    17
                   PLOT TITLE AT TOP OF FRAME
             C
    18
    19
             C
                   ENTRY PLOT1
    20
    21
             C
    22
             C
                   FUNCTION:
    23
             C
                     GENERATE TITLE INFO. FOR PAGE OF MOUNT PLOTS
             C
    24
    25
                   CALL RESET('PHYSOR')
                   CALL AREA2D(1.,.8)
    26
    27
                   CALL HEIGHT (.018)
    28
             C
                   PRINT X-SCALE VALUE FOR THIS PAGE OF PLOTS (METERS)
    29
             C
    30
             C
    31
                   SCAL=XMAX-XMIN
                   ENCODE(11,SC)SCAL
    32
    33
                   FORMAT(F7.6)
                   SUBSTR(SSCL, 1,7)=SC
    35
                   SUBSTR(SSCL,7,1)='$'
                   CALL MESSAG(SSCL, 100, .39, .925)
    36
             C
    37
                   PLOT TITLE
    38
             C
    39
             C
    40
                   ENCODE(3,PAG)1PGE
                   SUBSTR(TITLE(7),3,3)=PAG
                   FORMAT(13)
    42
                   CALL HEIGHT (.027)
    43
                   CALL MESSAG(TITLE, 44, 0., .92)
    44
    45
                   CALL ENDGR(O)
    46
                   CALL RESET('HEIGHT')
    47
                   RETURN
    48
    49
             C
    50
                   ENTRY PLOT2(IFM)
             C
    51
    52
                   FUNCTION:
    53
                      GENERATE MOUNT PLOT FOR A FRAME OF DATA
             C
                   ARGUMENT DEFINITION:
    55
             C
                     IFM: CURRENT FRAME COUNT
             C
    56
                   PLOT DATA POINTS
    57
             C
    58
             C
```

59

CALL HEIGHT (.01)

```
öО
                CALL PHYSOR(XOR, YOR)
61
                CALL AREA2D(.18,.18)
 62
         C
                WRITE BLOCK NO. CORRESPONDING TO DATA PT.
63
         C
64
 65
                XFM=.153
                YFM=. 165
66
67
                ENCODE (7, FRAM) IFM
                FORMAT(13)
 68
          7
                SUBSTR(FRAM,4,1)='$'
 69
                CALL MESSAG(FRAM, 100, XFM, YFM)
 70
 71
 72
                PLOT SYMBOL FOR CHAIR DATA (IF CHAIR DATA AVAILABLE)
 73
 74
                IF(DC(IST).GT.990)THEN
                  CONTINUE
 75
                ELSE
 76
 77
                XCH=.005
 78
                YCH=. 165
 79
                  CALL MESSAG('C', 1, XCH, YCH)
 80
                END IF
 81
         C
                SCALE DATA TO PRESENT PLOTTING AREA
 82
83
         C
                CALL GRAF (XMIN, STEP, XMAX, YMIN, STEP, YMAX)
 84
 85
         C
 86
                DRAW BLOCK AROUND SUBPLOT
 87
                CALL RLVEC(XMIN, YMIN, XMIN, YMAX, 0000)
 88
 89
                CALL RLVEC(XMAX, YMAX, XMIN, YMAX, 0000)
                CALL RLVEC(XMAX, YMAX, XMAX, YMIN, 0000)
 90
                CALL RLVEC(XMIN, YMIN, XMAX, YMIN, 0000)
 91
 92
                NTHIS=0
 93
                DO 50, J=1, IX
 94
                NPT(J)=0
                IF(DX(1ST,J).GT.990.OR.DY(1ST,J).GT.990)THEN
 95
                  CONTINUE
96
97
                ELSE
                  NTHIS=NTHIS+1
 98
99
                LOAD DATA FOR ALL TARGETS IN THIS FRAME
100
101
         C
                  DAT(NTHIS, 1) = ABS(DX(IST, J))
102
103
                  DAT(NTHIS,2)=ABS(DY(IST,J))
         C
104
105
                IDENTIFY MANUAL ENTRIES
106
107
                  IF(DX(IST, J).LT.O.)NPT(NTHIS)=1
                  TGT(NTHIS)=SUBSTR(VARX(J),4,2)
108
                  IF(SUBSTR(VARX(J),4,2).NE.SUBSTR(VARY(J),4,2))THEN
109
110
                    PRINT 52
                    FORMAT(' X + Y DISP. TARGETS DO NOT AGREE ')
111
          52
112
                    STOP 'PLOTD'
113
                  END IF
                END IF
114
115
          50
                CONTINUE
                IF(NTHIS.NE.O)THEN
116
117
                  DO 60.J=1.NTHIS
                  X=XPOSN(DAT(J,1).DAT(J,2))
118
119
                  Y=YPOSN(DAT(J,1),DAT(J,2))
```

```
120
                   IF(TGT(J).LE.'09')THEN
121
                     XT=X
122
                     VT=V
123
                     XM=X-.004
124
                     YM=Y-.009
125
                     SUBSTR(TEMP, 1, 1)=SUBSTR(TGT(J), 2, 1)
126
                     IT=1
127
                   ELSE
                     XT=X-.006
128
129
                     YT=Y
130
                     XM=X-.007
131
                     YM=Y - . 009
                     TEMP=TGT(J)
132
133
                     IT=2
                  END IF
134
135
         С
                PLOT TARGET
136
137
                  CALL MESSAG(TEMP, IT.XT.YT)
138
         C
139
                PLOT CIRCLE AROUND TARGET IF MANUAL ENTRY
140
         С
141
         Ç
142
                   IF(NPT(J).NE.O)THEN
143
                     CALL HEIGHT (.029)
144
                     CALL INTNO(0,XM,YM)
145
                     CALL HEIGHT (.01)
146
                  END IF
                  CONTINUE
147
           60
148
                   INS*NTHIS-1
149
         C
         C
                CONNECT TARGETS WITH LINES
150
151
         C
                  DO 68,J=1,INS
152
153
                   J1=J+1
                  DO 68, J2=J1, NTHIS
154
155
                  CALL RLVEC(DAT(J, 1), DAT(J, 2), DAT(J2, 1), DAT(J2, 2), 0000)
156
           68
                  CONTINUE
157
                END IF
                TADD='
158
                TDROP='
159
         С
160
                DETERMINE WHICH TARGETS HAVE BEEN ADDED OR DELETED FROM LAST FRAME
161
162
                IF(IST.NE.1)THEN
163
                   IF(NTHIS.NE.O.OR.NLAST.NE.O)THEN
164
                     IF (NTHIS.NE.O) THEN
165
166
                       DO 112,J=1,NTHIS
167
           112
                       TNEW(J)=TGT(J)
168
                       IF (NLAST.NE.O) THEN
                         DO 113, J=1, NLAST
DO 113, K=1, NTHIS
169
170
                         IBOTH=0
171
                         IF(TOLD(J).EQ.TNEW(K))IBOTH=1
172
173
                         IF(IBOTH.EQ. 1)THEN
174
                           TOLD(J)='
175
                           TNEW(K)='
176
                         END IF
                         CONTINUE
177
           113
                         DO 114, J=1, NLAST
178
                         IF(TOLD(J).NE.' ')TDROP=TOLD(J)
179
           114
```

```
18¢
                       END IF
                       DO 115,K=1,NTHIS

IF(TNEW(K).NE.' ')TADD=TNEW(K)
181
           115
182
                     ELSE IF (NTHIS.NE.O) THEN
183
184
                        IF (NLAST. EQ. O) THEN
185
                          DO 214, J=1, NLAST
186
                          IF(TOLD(J).NE.
                                            ')TDROP=TOLD(J)
187
                       END IF
                     END IF
188
                   ELSE IF(NTHIS.EQ.O .AND. NLAST.EQ.O)THEN
189
                     GO TO 111
190
191
                   END IF
192
                 ELSE IF(IST .EQ. 1)THEN
193
                   IF(NTHIS.EQ.O)GO TO 111
194
195
                 STORE TARGET NOS. FOR THIS FRAME
196
197
                DO 116, J=1, NTHIS
TOLD(J)=TGT(J)
198
199
           116
                 NLAST=NTHIS
200
201
202
                 PLOT SYMBOL IF NEW TARGET WAS VISIBLE IN THIS FRAME
          C
203
204
                 XNEW= . 005
205
                 YNEW= . 007
206
                 IF (TADD. LE. '09') THEN
207
                   SUBSTR(TEMP, 1, 1)=SUBSTR(TADD, 2, 1)
208
                   IA=1
209
                 ELSE
                   TEMP=TADD
210
211
                   IA=2
212
                 END IF
                 CALL MESSAG(TEMP, IA, XNEW, YNEW)
213
214
                 PLOT SYMBOL IF A TARGET WAS DROPPED IN THIS FRAME
215
216
217
                 XDROP=.159
218
                 YDROP = . 007
219
                 IF(SUBSTR(TDROP, 1, 1).EQ. 'O')SUBSTR(TDROP, 1, 1)=' '
220
                 CALL MESSAG(TDROP, 2, XDROP, YDROP)
221
                 CONTINUE
222
                 END SUBPLOT
          C
223
224
225
                 CALL RESET('HEIGHT')
226
                 CALL ENDGR(O)
                 RETURN
227
                 END
228
```

PPRT,S .MIXY

```
LAMBERT = (PF$(O).XYPLOT(22)
                    SUBROUTINE XYPLOT
     3
                    FUNCTION:
             C
                       PLOT X AND Y DISPLACEMENT VALUES FOR GIVEN RUN AND ANATOMICAL
     5
             C
                       MOUNT; EACH PHOTO TARGET PLOTTED ON SAME GRAPH
                    DIMENSION DXARY(250), DYARY(250)
                    COMMON/LOAD/XMIN, XMAX, IPGE, YMIN, YMAX, TITLE, IST, ILT, IX, XOR,
                   *YOR, VARX, VARY, IERR, STEP, DC(250), DX(250, 12), DY(250, 12)
COMMON/PHTHDR/RUNID, VARID, ISITID, FITIME, JDTDIG, DELTA, IPGVER
    10
                    CHARACTER+6 RUNID, VARID, JDTDIG, IPGVER, TITLE(9), VARX(12), VARY(12)
    11
    12
                    CHARACTER+6 XYTIT(9), TAR+2, TIME+8, DATE+8
    13
                    DATA NPTS. ITAR/2+0/
    14
    15
                    LOAD TITLE INFO.
             C
    16
    17
                    DO 12, I=1,9
    18
                    XYTIT(I)=TITLE(I)
    19
                    CONTINUE
    20
                    XYTIT(5)='
                    XYTIT(6)=' '
    21
                    XYTIT(7)='
    22
                    XYTIT(8)='
    23
    24
                    XYTIT(9)='
    25
                    CALL ADATE (DATE, TIME)
    26
                    XYTIT(4)=TITLE(5)
    27
                    SUBSTR(XYTIT(5),4,2)=SUBSTR(DATE,1,2)
                    SUBSTR(XYTIT(6), 1,2)=SUBSTR(DATE, 3,2)
    28
                    SUBSTR(XYTIT(6),4,2)=SUBSTR(DATE,5,2)
    29
    30
    31
                    SUPPRESS LISTING FOR OUT OF RANGE POINTS
    32
    33
                    CALL NOCHEK
                    CALL RESET('PHYSOR')
    34
    35
    36
             C
                    LABEL AXES
    37
                    CALL AREA2D(.8,.8)
    38
                    CALL XNAME(' FILM PLANE X DISPLACEMENT (METERS)',35)
    39
    40
                    CALL YNAME(' FILM PLANE Y DISPLACEMENT (METERS)',35)
    41
                    PRINT HEADING
    42
    43
             C
    44
                    CALL HEIGHT (.027)
    45
                    CALL MESSAG(XYTIT,50,0...92)
                    CALL HEIGHT (.016)
    46
    47
                    COMPUTE MIN AND MAX VALUES FOR X AND Y
    48
    49
    50
                    IERR=999
                    CALL MIXY
    51
                    IERR=0
    52
    53
                    SCALE DATA FOR PLOTS
    54
    55
             C
                    CALL GRAF (XMIN.STEP, XMAX, YMIN, STEP, YMAX)
    57
    58
                    PLOT X-Y CONTOUR FOR EACH TARGET
```

```
60
                CALL HEIGHT (.022)
                DO 10, I=1, IX
LINE=MOD(1,5)
61
62
                 IF(LINE.EQ.O)THEN
63
 64
                   CALL DOT
65
                 ELSE IF(LINE.EQ. 1)THEN
                   CALL RESET('DOT')
66
                 ELSE IF(LINE.EQ.2)THEN
67
68
                   CALL CHNOOT
                 ELSE IF (LINE . EQ . 3) THEN
69
 70
                   CALL DASH
 71
                 ELSE IF(LINE.EQ.4)THEN
 72
                   CALL CHNDSH
 73
 74
                LOAD DATA INTO PLOT ARRAY AND CHANGE NEGATIVE SIGNS
 75
 76
 77
                DO 30,J=1,250
 78
                DXARY(J)=DX(J,I)
                DYARY(J)=DY(J,I)
 79
                 IF(DXARY(J).LT.O.)THEN
 80
                   DXARY(J)=-1. *DXARY(J)
 81
 82
                 END IF
 83
                 IF(DYARY(J).LT.O.)THEN
                   DYARY(J)=-1.+DYARY(J)
 84
 85
                 END IF
                CONTINUE
 86
           30
 87
                 PLOT DATA (ONLY NON-ZERO PTS)
 88
          C
 89
 90
                 IPOS=1
 91
                 ITAR=0
                DO 35,J=1POS,250
IF(DXARY(J).GT.990..DR.DYARY(J).GT.990.)THEN
           5
 92
 93
                   CONTINUE
 94
 95
                 ELSE
 96
                   NPTS=0
 97
                   IPLOT=J
                   GD TD 15
 98
                END IF
 99
                CONTINUE
100
           35
101
                 GO TO 10
                 DO 40,K=IPLOT,250
102
           15
103
                 IF(DXARY(K).GT.990..OR.DYARY(K).GT.990.)THEN
                   IF(ITAR.EQ.O)THEN
104
                     SX=XPOSN(DXARY(IPLOT), DYARY(IPLOT))
105
                     SY=YPOSN(DXARY(IPLOT), DYARY(IPLOT))
TAR=SUBSTR(VARX(I),4,2)
106
107
                     IF(SUBSTR(TAR, 1, 1).EQ. 'O')SUBSTR(TAR, 1, 1)=' '
108
109
                     CALL MESSAG(TAR, 2, SX, SY)
                     ITAR=1
110
                   END IF
111
                   CALL CURVE(DXARY(IPLOT).DYARY(IPLOT).NPTS.O)
112
                   IPOS=K+1
113
                   IF(K.LT.250)GO TO 5
114
115
                 ELSE
                   NPTS=NPTS+1
116
                   IF(K.EQ.250)THEN
117
                     IF(ITAR.EQ.O)THEN
118
                        SX=XPOSN(DXARY(IPLOT), DYARY(IPLOT))
119
```

```
120
                               SY=YPOSN(DXARY(IPLOT), DYARY(IPLOT))
121
                               TAR=SUBSTR(VARX(1),4,2)
IF(SUBSTR(TAR,1,1).EQ.'O')SUBSTR(TAR,1,1)=' '
122
123
                               CALL MESSAG(TAR, 2, SX, SY)
124
                      END IF

CALL CURVE(DXARY(IPLOT),DYARY(IPLOT),NPTS,O)
END IF
END IF
CONTINUE
CONTINUE
125
126
127
128
              40
10
129
                      CONTINUE
130
                      CALL RESET('HEIGHT')
CALL RESET('XNAME')
CALL RESET('YNAME')
CALL RESET('DOT')
131
132
133
134
                      CALL ENDPL(O)
135
136
                      RETURN
137
                      END
```

PPRT,S .TIMER

```
LAMBERT * TPF$(0). XQTSGN(3)
               PXQT MPOOS1/SIGN
      1
                     CONTROL STATEMENT IMMEDIATELY AFTER PXQT STATEMENT
      3
               ♥.
                         POS 5 - NO. INPUT UNITS (1, 2 OR 3)
POS 10 - LOWEST RUN NO. TO BE PROCESSED
POS 20 - HIGHEST RUN NO. TO BE PROCESSED
               Φ.
      5
               PTEST TNE/O/S6
PJUMP DUT
      8
               PASG,TF PCSXXXXXXXX.,U9S,SAVEO5 . PCSXXXXXXXX
      9
               PCOPY,GM 9.,PCSXXXXXXXX.
     10
               ₱CDPY,GM 9.,PCSXXXXXXXX.
     12
               COPY,GM 9.,PCSXXXXXXXX.
     13
               eTEST2:
               PTEST TG/1/S6
     14
     15
               ecopy, GM 10., PCSXXXXXXXX.
ecopy, GM 10., PCSXXXXXXXX.
     16
     17
                PCOPY,GM 10.,PCSXXXXXXXX.
     19
               PTEST3:
               PTEST TG/2/S6
PJUMP DUT
PCOPY.GM 11.,PCSXXXXXXXX.
     20
     21
     22
               PCOPY, GM 11., PCSXXXXXXXX.
     23
               PCOPY, GM 11., PCSXXXXXXXX.
     24
     25
               COUT:
     26
               •FREE, I PCSXXXXXXXX.
     27
               . EXITED FROM .XQTSGN
```

●PRT,S .SGFLIP

```
I.AMBERT + TPF$(0).SGFLIP(61)
             C
                    FUNCTION:
             C
                      THIS ASCII FORTRAN DRIVER PROGRAM PERFORMS
             C
                      (1) SIGN CHANGE OF NEGATIVE DATA PTS. (MANUAL ENTRIES)
                      TO POSITIVE AND (2) WRITES REFORMATTED DATA RECORD TO MASS STORAGE
     5
             C
             C
     6
                    DIMENSION DC(250)
                    COMMON/PHTHDR/RUNID, VARID, ISITID, F1TIME, JDTD1G, DELTA, IPGVER
                    CHARACTER+6 RUNID, VARID, JDTDIG, IPGVER, FRUN, LRUN, RUNS (200)
    10
                   *,FIRST,LAST,ENC*4,SITE*1
    11
                    READ USER PARAMETERS IN CARD IMAGE
    12
             C
    13
             C
    14
                    READ(5,6) IFILE, FRUN, LRUN
    15
                    FORMAT(15,9X,2(A6,4X))
                    DATA MAX/320/
    16
    17
             C
                    COMPUTE RUN RANGE
    18
             C
    19
             C
    20
                    FIRST=SUBSTR(FRUN, 3, 4)
    21
                    LAST=SUBSTR(LRUN, 3, 4)
    22
                    DECODE(4,FIRST)IFIRST
    23
                    DECODE (4, LAST) ILAST
    24
                    FORMAT(14)
    25
                    COMPUTE INPUT UNIT ASSIGNMENTS
    26
             С
    27
             C
    28
                    ILIM=IFILE+8
                    IU=9
    29
    30
                    CONTINUE
                    PRINT 3, IU, ILIM, FRUN, LRUN
    31
                    FORMAT(2110,2(4X,A6))
    32
              3
    33
                    NIU=-1+IU
    34
    35
             C
                    BEGIN RUN LOOP
             C
    36
                    IRN=IABS(ILAST-IFIRST)+1
    37
    38
                    INC=IFIRST
    39
                    DO 100, I=1, IRN
    40
                    SUBSTR(RUNS(I),1,2)='LX'
                    ENCODE (17, ENC) INC
    42
              17
                    FORMAT(14)
                    SUBSTR(RUNS(I),3,4)=ENC
    43
    44
                    INC=INC+1
    45
    46
                    ATTEMPT TO SET SECTOR TO HEADER FOR RUN
    47
                    CALL SETSCT(IU, RUNS(I), 'PHDATA', 1, ISITE, NREC, IER)
    48
                    IF(IER.NE.O)GO TO 100
CALL GETRCD(IU, MAX, RUNID, VARID, ISITE, IDL, DC, IER)
    49
    50
    51
                    IF(IER.NE.O)THEN
    52
                      PRINT 13, IER
    53
                      FORMAT(1X, 'STATUS=', 03)
    54
                      STOP 'HEADER ERROR'
    55
                    END IF
    56
    57
                    SET SECTOR FOR TIME RECORD
             С
    58
             C
    59
                    VARID=' TS
```

```
ENCODE(11, SITE) ISITID
60
61
           11
                FORMAT(I1)
62
                SUBSTR(VARID, 1, 1) = SITE
63
                CALL SETSCT(IU, RUNID, VARID, 1, ISIT, NREC, IER)
64
                IF(IER.NE.0)GO TO 110
65
         C
                READ NEXT RECORD
66
         C
67
                DO 10,K=1,100
68
                CALL SECTOR(IU, ISEC)
69
70
                CALL GETRCD(IU, MAX, RUNID, VARID, ISIT, IDL, DC, IER)
                IF (IER. NE. O) THEN
                  IF(IER.EQ. 1)THEN
72
                     GO TO 100
73
74
                  ELSE
                     GO TO 110
75
 76
                  END IF
77
                END IF
                INEG=0
78
79
         C
                CHANGE SIGNS OF NEGATIVE NOS.
80
         С
81
                DO 8,M=1,250
82
83
                IF(DC(M).LT.O)THEN
84
                  INEG=1
85
                  DC(M) = -DC(M)
                END IF
86
87
                CONTINUE
          8
88
         С
89
                WRITE RECORD BACK TO MASS STORAGE
90
91
                IF (INEG. NE. O) THEN
                  CALL SETADR(IU.ISEC)
CALL PUTRCD(NIU.RUNID.VARID.ISIT.IDL.DC.IER)
92
93
                  IF(IER.NE.O)GO TO 110
94
95
                END IF
96
           10
                CONTINUE
97
         C
98
         С
                ERROR ROUTINE
99
                PRINT 111, RUNID, IER
           110
100
                FORMAT(' ERROR IN SIGN FLIP ROUTINE FOR RUN ',A6/' STATUS='.03)
101
102
           100
                CONTINUE
103
                IF(IU.LT.ILIM)THEN
104
                  IU=IU+1
                  GO TO 1
105
106
                END IF
                END
107
```

SUBROUTINE SETSCT

a. Function: Subroutine SETSCT is an ASCII FORTRAN program designed to control the positioning of sector address for either a photo header record or a photo time record. The calling program must provide the logical unit number of the photo data file and the ASCII variable RUNID; these arguments are used to locate the desired run in the random access directory. In addition, the user provides the variable name (see Calling Sequence) and the desired occurrence of the time record as arguments. There may be more than one PDS (Photo Digitizing System) physical record/target in a run, hence it is necessary to designate which one is desired (even if there is only one PDS physical record/target).*

Entry DATSCT of subroutine DIRBFR is called in order to retrieve the sector address of the desired record. This address is used in a subsequent call to Entry SETADR of subroutine FORTIO in order to correctly position the data file.

This subroutine returns the site ID of the data file as argument ISITE. Additionally, the number of PDS physical records required per target for the desired run is returned in argument NREC.

b. Subroutines (see reference 1):

DIRBFR/Entry DATSCT, FORTIO/Entry SETADR

c. Calling Sequence:

CALL SETSCT (IUNIT, RUNID, VARID, NPHYS, ISITE, NREC, IER)

* In the event more than 250 frames of photo data were digitized for a target, an extra PDS physical record is required for each additional 250 frames.

SUBROUTINE SETSCT (Continued)

where:

ARGUMENT	DESCRIPTION	TYPE
IUNIT	Logical unit number of photo directory and data file	Integer
RUNID	Run number for requested sector positioning	6 char
VARID*	Variable name for requested sector positioning	6 char
NPHYS	Desired occurrence of time record (Nphys=1 unless more than 250 frames were digitized)	Integer
ISITE	Returned site ID of data file	Integer
NREC	Returned number PDS physical records required for each photo target	Integer
IER	Returned error status code (See Appendix 4e for code definitions)	Octal

^{*} This argument identifies whether the sector is to be set for a header record (VARID='PHDATA') or a time record (VARID='1TS 'for site 1).

SUBROUTINE GETRCD

a. Function: This subroutine is an ASCII FORTRAN program designed to control the execution of sequential binary reads of FORTRAN V photo (1) header records, (2) time records and (3) displacement records. GETRCD utilizes Entry READIO of subroutine FORTIO to retrieve the data record from mass storage (the data record is stored in named common IOBUFF). It then extracts the run number (RUNID) and variable name (VARID) from the data record and converts each from FIELDATA to ASCII with system function subprogram FD2ASC; these converted character variables are returned to the calling program. The site ID (ISITE) of the data record is also returned as an argument.

If the retrieved record is either a time record or a displacement record, the word length of the data array (IDL) and the data array itself (DATARY) are returned to the calling program. If the retrieved record is a header these arguments have no meaning. However, when a header record is read GETRCD calls subroutine DECHED in order to (1) convert all alphanumeric data in the header to ASCII and (2) store all header information in named common PHTHDR.

The user specifies MAXLEN as the maximum word length of the data record being read from mass storage. GETRCD utilizes function subprogram EXPAND to insure that the user has specified a maximum length large enough to accommodate those sentinels and checksums which will be read from mass storage as part of the input record. If MAXLEN is too small, an appropriate error status code is returned.

b. Subroutines (see reference 1):

FORTIO/Entry READIO, FD2ASC, ASC2FD, DECHED, EXPAND

c. Calling Sequence:

Call GETROD (IUNIT, MAXLEN, RUNID, VARID, ISITE, IDL, DATARY, IER)

SUBROUTINE GETRCD (Continued)

where:

ARGUMENT	DESCRIPTION	TYPE
IUNIT	Logical unit number of photo data and directory file	Integer
MAXLEN	Maximum word length of input record	Integer
RUNID	Returned run number of input record	6 char
VARID*	Returned variable name of input record	6 char
ISITE	Returned site ID	Integer
IDL	Returned word length of data array	Integer
DATARY	Returned data array	Real
IER	Returned error status code (see Appendix 4e for code definitions)	Octa1

d. Common Block Usage:

COMMON/IOBUFF/IOBUFF(4100)

where:

VARIABLE	DESCRIPTION	TYPE
IOBUFF(4100)	Input array containing FORTRAN (FIELDATA) photo data record read from mass storage (see Figures 2c-2e for data record formats	Integer

The contents of this array are passed as an argument to the header decoding subroutine (DECHED). Alternatively, if the photo input record is either a time record or a displacement record, the data array is extracted from IOBUFF for return to the calling program.

* VARID='PHDATA' for a photo header record VARID='ITS ', '2TS ' or '3TS ' for a photo time record (first character represents site ID) See Figure 4 for possible values of VARID for a photo displacement record

SUBROUTINE PUTRCD

a. Function: Subroutine PUTRCD is an ASCII FORTRAN program designed to control the execution of sequential binary writes of FORTRAN (FIELDATA) photo (1) header records, (2) time records, and (3) displacement records. This routine provides the user with complete directory maintenance. The user may utilize PUTRCD to (1) create a photo data output file with accompanying directory or (2) perform sequential output of photo records without directory maintenance. If the user desires to perform sequential writes without building a corresponding directory, (s)he must transmit the negative of the logical unit number (of the photo data file) as the value of the argument IUNIT in the call statement.

In the event a photo header record is to be written, it is the user's responsibility to provide the ASCII version of the header in named common PHTHDR (see Figure 2c for format). However, if the user utilizes input subroutine GETRCD to read an existing header record, its ASCII version is automatically stored in common. This ASCII version of the header must be converted to FIELDATA; this is accomplished by a call to subroutine ENCHED.

The user must provide PURTCD with the (1) logical unit number of the photo data output file (IUNIT), (2) run number of the output record (RUNID), (3) variable name of the output record (VARID*), (4) site ID of the output record (ISITE), (5) word length of the output data array (IDL) and (6) output data array (DATARY). Values for items (5) and (6) must be assigned for all output records except header records. Items (1) through (4) are passed by PUTRCD to subroutine DIRCTY where the necessary directory entries are created.

Once the directory has been updated, PUTRCD uses the word length of the output array (IDL) and the output array itself (DATARY) to construct the output record. Entry WRITIO of subroutine FORTIO is then called to perform the sequential write. The output record is passed down in an argument array (IOBUFF), and is also stored in named common IOBUFF.

b. Subroutines (see reference 1):

ASC2FD, ENCHED, FORTIO/Entry WRITIO

c. Calling Sequence:

Call PUTRCO (IUNIT, RUNID, VARID, ISITE, IDL, DATARY, IER)

* VARID='PHDATA' for a photo header record VARID='ITS ', '2TS ' or '3TS ' for a photo time record (first character represents site ID) See Figure 4 for possible values of VARID for a photo displacement record

SUBROUTINE PUTRCD (Continued)

where:

ARGUMENT	DESCRIPTION	TYPE
IUNIT	Logical unit number of photo data and directory file	Integer
RUNID	Run number of output data record	6 char
VARID	Variable name of output data record	6 char
ISITE	Site ID of output record	Integer
IDL*	Word length of output data array	Integer
DATARY*	Output data array	Rea1
I ER	Returned error status code (see Appendix 4e for code definitions)	Octal

d. Common Block Usage:

- (1) COMMON/PHTHDR/RUNID, VARID, ISITID, F1TIME, JDTDIG, DELTA, IPGVER

 (See Figure 2c for format of named common PHTHDR)
- (2) COMMON/IOBUFF/IOBUFF(4100)

where:

VARIABLE	DESCRIPTION	TYPE
IOBUFF(4100)	Output array containing FORTRAN (FIELDATA) photo (1) header record, (2) time record or (3) displacement record to be written to core (see Figures 2c-2e for data record formats)	Integer

* This argument has no meaning for header record.

SUBROUTINE EOFPUT

- a. Function: This ASCII FORTRAN program is designed to control the writing of an "end-of-file" to the end of a data file. Initially EOFPUT calls subroutine DIRCTY in order to have the output file positioned for the write. Once this is done, the "end-of-file" is written by virtue of a call to entry WRITIO of the subroutine FORTIO. Control is then returned to the calling program. In the event the user wishes to write an "end-of-file" without directory maintenance, (s)he must pass down the negative of the logical unit number (of the photo data file) as the value of the argument IUNIT.
 - b. <u>Subroutines</u> (see reference 1):

DIRCTY, FORTIO/Entry WRITIO

c. Calling Sequence:

Call EOFPUT (IUNIT, IER)

where:

ARGUMENT	DESCRIPTION	TYPE
IUNIT	Logical unit number of photo data and directory file	Integer
IER	Returned error status code (see Appendix 4e for code definitions)	Octal

ERROR CODE DEFINITIONS

IER (Octal) = error status code of the I/O function

IER (Octal)	Explanation
0	Normal I/O completion
1	"End-of-file" has been identified
5	Attempted to read from unassigned area of mass storage
20	Write attempted on read only file
21	Reference made to unassigned file
22	Write attempted beyond assigned area of mass storage
25	Maximum length of input/output array exceeded
26	FORTRAN sentinels are unequal - read was not executed
30	Run number not found in run directory
31	Variable name not found in variable directory
32	Checksum error
33	Run number not last entry in run directory
34	Update in place aborted due to different data record lengths
35	Invalid FORTRAN sentinel - word length indicated for physical record greater than 249
36	Invalid FORTRAN sentinel - record number indicated for first physical record not equal to 1

DIC